Publications

My areas of interest in machine learning include Bayesian deep learning, deep probabilitic models and their applications.

2025

  1. vml_preview.png
    Verbalized Machine Learning: Revisiting Machine Learning with Language Models
    In Transactions on Machine Learning Research (TMLR), 2025
    ICML 2024 Workshop on In-context Learning
    ICML 2024 Workshop on LLMs and Cognition
  2. Fast Diversity-Preserving Reward Finetuning of Diffusion Models via Nabla-GFlowNets
    Zhen LiuTim Z. Xiao*Weiyang Liu*, Yoshua Bengio, and Dinghuai Zhang
    In International Conference on Learning Representations (ICLR), 2025
  3. Can Large Language Models Understand Symbolic Graphics Programs?
    Zeju Qiu*, Weiyang Liu*, Haiwen Feng*, Zhen LiuTim Z. Xiao, Katherine M. Collins, Joshua B. Tenenbaum, and 3 more authors
    In International Conference on Learning Representations (ICLR), 2025
  4. Improving Probabilistic Diffusion Models With Optimal Covariance Matching
    Zijing Ou*, Mingtian Zhang*Andi ZhangTim Z. Xiao, Yingzhen Li, and David Barber
    In International Conference on Learning Representations (ICLR), 2025
  5. Your Finetuned Large Language Model is Already a Powerful Out-of-distribution Detector
    Andi ZhangTim Z. XiaoWeiyang LiuRobert Bamler, and Damon Wischik
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2025

2024

  1. dmaapx.png
    A Note on Generalization in Variational Autoencoders: How Effective Is Synthetic Data and Overparameterization?
    Tim Z. Xiao*Johannes Zenn*, and Robert Bamler
    In Transactions on Machine Learning Research (TMLR), 2024

2023

  1. unireps_rebasin.png
    A Compact Representation for Bayesian Neural Networks By Removing Permutation Symmetry
    Tim Z. XiaoWeiyang Liu, and Robert Bamler
    arXiv preprint arXiv:2401.00611, 2023
    NeurIPS 2023 Workshop on Unifying Representations in Neural Models
  2. svhn_remix.png
    The SVHN Dataset Is Deceptive for Probabilistic Generative Models Due to a Distribution Mismatch
    Tim Z. Xiao*Johannes Zenn*, and Robert Bamler
    arXiv preprint arXiv:2312.02168, 2023
    NeurIPS 2023 Workshop on Distribution Shifts
  3. hit_3d.png
    Trading Information between Latents in Hierarchical Variational Autoencoders
    Tim Z. Xiao, and Robert Bamler
    In International Conference on Learning Representations (ICLR), 2023
  4. Iterative Teaching by Data Hallucination
    Zeju Qiu*, Weiyang Liu*Tim Z. XiaoZhen Liu, Umang Bhatt, Yucen Luo, Adrian Weller, and 1 more author
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2023

2022

  1. Out-of-Distribution Detection with Class Ratio Estimation
    Mingtian ZhangAndi ZhangTim Z. Xiao, Yitong Sun, and Steven McDonagh
    arXiv preprint arXiv:2206.03955, 2022
    NeurIPS 2022 Workshop on Machine Learning Safety
  2. Improving VAE-Based Representation Learning
    Mingtian ZhangTim Z. Xiao, Brooks Paige, and David Barber
    arXiv preprint arXiv:2205.14539, 2022

2021

  1. Locally-Contextual Nonlinear CRFs for Sequence Labeling
    Harshil Shah, Tim Z. Xiao, and David Barber
    arXiv preprint arXiv:2103.16210, 2021
  2. ucl_logo.png
    Exploiting Semi-Supervised Generative Model in Active Learning
    Tim Z. Xiao
    University College London, 2021
    Master’s Thesis at UCL

2020

  1. uncertainty-qa.png
    You Need Only Uncertain Answers: Data Efficient Multilingual Question Answering
    Zhihao Lyu, Danier Duolikun, Bowei Dai, Yuan Yao, Pasquale Minervini, Tim Z. Xiao, and Yarin Gal
    ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning, 2020
  2. uncertainty-transformer.png
    Wat zei je? Detecting Out-of-Distribution Translations with Variational Transformers
    Tim Z. XiaoAidan N. Gomez, and Yarin Gal
    arXiv preprint arXiv:2006.08344, 2020
    Spotlight talkNeurIPS 2019 Workshop on Bayesian Deep Learning

2016

  1. A partial reconfiguration controller for Altera Stratix V FPGAs
    Zhenzhong Xiao, Dirk Koch, and Mikel Lujan
    In International Conference on Field Programmable Logic and Applications (FPL), 2016