Are you certain about this translation? Detecting Out-of-Distribution Translations with Variational Transformers

Tim Z. Xiao, Aidan N. Gomez, Yarin Gal OATML, Department of Computer Science, University of Oxford tim.z.xiao@outlook.com, {aidan.gomez, yarin}@cs.ox.ac.uk

Challenge: Flag Out-Of-Distribution (OOD) Data

🗙 Text Docum	ents				
IRISH - DETECTED ENG	LISH 🗸 🗸	÷	ENGLISH	SPANISH	
ag ag	g ag ag ag > g ag ag ag g ag ag ag	<	by at that at t bottom is tov	he same at th vards	ne
Ų ■)	98/5000				

- Figure: A screenshot from Google Translate.
- Current NMT models fail to provide uncertainty estimates for their translations.
- If input lies outside of the training data distribution, the models are not able to distinguish and flag them.

Can we estimate uncertainty and identify OOD data in **Neural Machine Translation (NMT)?**

Existing Uncertainty Measures

- In regression, we can use the variance of samples as an uncertainty estimate.
- ► In classification, there are a few approaches: variation ratios, predictive entropy, mutual information etc.

However, translation is neither a regression or classification task, and the above measures are not applicable. There are some attempts at investigating uncertainty in NMT tasks:

► Kumar & Sarawagi, 2019

- Found that the predictive probability distribution over the vocabulary used during decoding is not a good reference for model uncertainty.

▶ Ott et al., 2018

- Found that the model has a highly uncertain output predictive distribution in the way that probability mass at the sequence level spread widely over the hypothesis space.

Missing effective uncertainty measures for out-of-distribution detection in NMT.

ARABIC	\sim	
	•	

Proposed Measures

We investigate several measures of uncertainty appropriate for **long** sequences of discrete variables (e.g. sentences):

Beam Score (Baseline): we assign a confidence to output y generated (using beam search) from input x using the score assigned to y's beam (Wu et al., 2016).

> $BS = \log(p(y|x)) / \text{length_penalty}(y; 0.6)$ length_penalty $(y; \alpha) = \left(\frac{5+|y|}{5+1}\right)$

2. Sequence Probability: we assign a confidence to output y generated from input x by taking the log predictive probability under the weight distribution.

 $SP = \log(\mathbb{E}_{\theta \sim q(\theta)} p_{\theta}(y|x)) / \text{length_penalty}(y; 0.6)$

3. BLEU Variance: we assign uncertainty at an input x by producing pairs of outputs from the model and measuring the squared complement of the BLEU (Papineni et al., 2002) to judge disagreement between model outputs on input x.

BLEUVar = $\mathbb{E}_{\theta \sim q(\theta)} \mathbb{E}_{y, y' \sim p_{\theta}(y|x)} (1 - \text{BLEU}(y, y'))^2$

How do we estimate these measures?

Beam Score (Baseline):

- We use the **deterministic model** found by gradient descent and simply take the probabilities from under its predictive distribution.

2. Sequence Probability:

- We use **MC Dropout** (Gal, 2016) and take a number of samples (N) to estimate the expectations:

$$SP \approx \log \left(\sum_{i=1}^{N} p_{\theta_i}(y|x) \right) / \text{lenged}$$

3. BLEU Variance:

- With **MC Dropout**, we use the results from beam search applied to N different model samples and measuring the complement BLEU between pairs of these outputs:

BLEUVar
$$\approx \sum_{i=1}^{N} \sum_{j \neq i}^{N} (1 - \text{BLEU}(\text{deco}$$

th_penalty(y; 0.6)

 $\operatorname{bde}_{\theta_i}(x), \operatorname{decode}_{\theta_i}(x)))^2$.

Evaluating Uncertainty in Sequence Models

- The performance-retention curve indicates how well an uncertainty measure would perform if the k% least certain outputs were deleted from the test dataset.
- \blacktriangleright The x-axis ranges along the fraction of data retained, while the y-axis measures some performance metric of the model on the retained data (Filos et al., 2019).
- A good uncertainty measure shows improvement in performance as low-confidence predictions are excluded from the test set

