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Abstract

Active learning tries to solve a practical problem for machine learning,

which is to create a good model with only limited labelling budget. In

this project, we exploit useful properties from semi-supervised genera-

tive model and use them in active learning. Our experiments in the half-

moon and MNIST dataset show that by using semi-supervised generative

model with simple acquisition function such as predictive entropy, we are

able to improve the performance of active learning. Further experiments

on our proposed acquisition functions expose interesting challenges in us-

ing data density provided by the model, which can be a valuable pointer

for future active learning research.
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Chapter 1

Introduction

In recent years, a lot of progress has been made in the field of machine learning. One major
challenge in applying many of these cutting edge research to real life problems is obtaining
labelled data. Unlike toy problems such as MNIST [LeCun et al., 2010] hand written digits
recognition, accurate labelling for tasks like speech recognition, machine translations, medi-
cal imaging is time consuming and requires help from domain experts. Therefore, it can be
very expensive. The follow up question is: How can we make the most out of a fixed budget
and a limited labelling capacity? In this project, we would like to explore whether the use of
semi-supervised generated model in active learning can give a good answer to this question.

1.1 Active Learning

Active Learning (AL), also known as optimal experimental design in statistics literature
[MacKay, 1992, Fedorov et al., 1972], provides a framework to approach the practical ques-
tion: which data should we acquire next for labelling so that we can maximise the perfor-
mance of our model? For a common supervised learning task, the goal is to learn the condi-
tional distribution p(y|x) from a set of labelled training data {(xi, yi)}ni=1, where (xi, yi) ∈ L.
For most real life tasks, the number of labelled data is usually very limited. Comparatively,
unlabelled data are much easier to obtain, and are continuously growing in many cases. In
this project, we consider the common pool-based scenario of active learning [Lewis and Gale,
1994, Settles, 2009]: an active learner, who wants to model the p(y|x), starts with a small
labelled training set L(0), but has the ability to actively select a subset among the unlabelled
data U (0) and acquire the labels for them through an oracle (e.g. human experts) [MacKay,
1992, Cohn et al., 1995]. This is a repeated process, after the acquisition of new labelled
data, the learner will update the model p(y|x) using the incremented labelled set L(1). Then,
the learner will seek to acquire a new batch of labelled data from the decremented unlabelled
set U (1).

1.1.1 Acquisition Function and Uncertainty in Prediction

An acquisition function A(x),x ∈ U is used to determine which unlabelled data to be
labelled next. A naive acquisition function can be one that randomly samples data from
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1.1. ACTIVE LEARNING

Figure 1.1: A diagram illustrating the active learning loop.

U for labelling. However, if we make use of the knowledge about the data or the current
model, we are able to create a much better acquisition function [Schröder and Niekler,
2020]. Therefore, the main challenge in active learning community is how to design a good
acquisition function. Ideally, a good acquisition function will prioritise the selection of
the most informative data in U such that the model can have a large improvement on its
performance.

Informativeness is an abstract idea and hard to evaluate. An intuitive and more tangible
interpretation of informativeness is model uncertainty. The assumption is that by learning
something a model is most uncertain of, it should gain the most knowledge (i.e. information
about the world, thus most informative). Uncertainty for a model in supervised learning
tasks can be revealed from its confidence for predicting the label y of an input x. Such uncer-
tainty in prediction is called predictive uncertainty, which captures the model’s uncertainty
in its output [Gal, 2016].

REMARK 1 (Model Uncertainty) If Bayesian principle is used to derive the posterior
distribution of model parameters, the predictive uncertainty will also take into account the
uncertainty inherits from model parameters, which usually results in a better estimation for
model uncertainty.

There are a few methods to measure and quantify predictive uncertainty [Lewis and Gale,
1994, Scheffer et al., 2001, Gal, 2016, Kendall et al., 2017]. Entropy [Shannon, 1948] is
one of most popular uncertainty measures, which originates from information theory and is
used to measure the average amount of information in a distribution. Assume our model
is parameterised by θ, then given any input x, the entropy for the predictive distribution
pθ(y|x) is

H[pθ(y|x)] =

∫
−pθ(y|x) log pθ(y|x) dy = 〈− log pθ(y|x)〉pθ(y|x) , (1.1)

which calculates a weighted average of log pθ(y|x) over all possible y. Large entropy implies
high predictive uncertainty. In contrast, small entropy implies the model is certain about
its prediction.

We can use a binary classification task (e.g. y ∈ {a, b}) as a simple example to understand
how entropy can measure the predictive uncertainty. Given x, if a model pθ1(y|x) is ex-
tremely uncertain about its prediction, it will predict y to be a with the same probability as
y to be b, which implies that the predictive distribution pθ1(y|x) is a uniform distribution
and pθ1(y = a|x) = pθ1(y = b|x) = 0.5,H[pθ1(y|x)] = −

∑
y∈{a,b}

1
2 log2

1
2 = 11. In com-

parison, for a confident model pθ2(y|x), it predicts y to be a with probability 1, then the
predictive distribution is pθ2(y = a|x) = 1, pθ2(y = b|x) = 0 and H[pθ2(y|x)] = 0.

When entropy is used to measure predictive uncertainty, it is called predictive entropy.

1Here we use base 2 for log, but the choice can vary between different applications.
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1.2. MOTIVATIONS

Predictive entropy is used in one of the most common acquisition functions, i.e. AH(x) =
H[pθ(y|x)]. Given the current model pθ(y|x) with parameter θ, based on predictive entropy
the most informative data x∗ ∈ U to be labelled next is

x∗ = arg max
x∈U

AH(x) = arg max
x∈U

H[pθ(y|x)] (1.2)

1.2 Motivations

In previous sections, we go through the procedure of active learning and an acquisition
function that based on predictive uncertainty. There are two attributes in above descriptions
that we might be able to exploit and further improve the performance of active learning,
which will in turn help us to save the labelling cost.

One is that during each iteration of active learning, the learner only make use of labelled data
for training the model. The other is that when we use predictive uncertainty for acquisition,
the data we acquire are highly dependent on pθ(y|x). In other words, the acquisition is
model specific (i.e. for the current modelM s.t. θ ∼ p(θ|M)) and task specific (i.e. to learn
the current underlining condition distribution p(y|x)).

These two attributes, especially the latter, have not been well addressed with powerful deep
learning toolkits. We believe the latest development in semi-supervised generative model
can be used to exploit these two attributes and improve the performance of active learning.

1.2.1 Utilise Unlabelled Data During Training

Most of the active learning methods only utilise the unlabelled data during acquisition [Tong
and Koller, 2001, Cohn et al., 1995, Freund et al., 1997, Gal et al., 2017], but they leave a
large amount of valuable information unused in the training step at each iteration. Similar
to active learning, Semi-Supervised Learning also offers a paradigm for taking advantages
from both labelled data and unlabelled data. However, semi-supervised learning does not
consider an acquisition step and the labelling oracle. Instead, it uses the unlabelled data
together with the labelled data during training.

Therefore, it is sensible to combine semi-supervised learning with active learning. In this
case, unlabelled data will be fully utilised in both the training step and the acquisition step.
In fact, many people have already tried the combination of the two schemes and it does
show improvement in the performance of active learning [McCallum and Nigam, 1998, Zhu
et al., 2003, Muslea et al., 2002, Guo and Schuurmans, 2008].

1.2.2 Generalise Across Tasks and Models

Less Bias Towards A Task

In the usual uncertainty based active learning setting, the unlabelled data are selected
through acquisition functions based on our model’s estimation of p(y|x) (e.g. predictive
entropy), where p(y|x) is specified by the mapping X → Y with x ∈ X, y ∈ Y . Such
acquisitions might be helpful for the current task but not for the others. For example, given
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1.2. MOTIVATIONS

a face image dataset X (e.g. CelebA [Liu et al., 2015]) and the data labelled through active
learning based on the task X → Smiling ,Smiling ∈ {True, False} might not be a good
training set for the task X → Eyeglasses,Eyeglasses ∈ {True, False}. Therefore, such task
dependent acquisition functions might not have a good generalisability if we would like to
reuse the acquired data for various tasks.

Our original goal is to make the most out of a limited labelling budget. If the acquired data
from one task can be partially or fully reused for other tasks, then we can save the cost
of acquiring and relabelling the same data set X. Thus, it will be nice to have an active
learning scheme that take the representativeness of a data alongside its informativeness into
consideration.

Less Bias Towards A Model

Moreover, when we try to measure the model uncertainty using pθ(y|x), we have to bear in
mind that the current parameters θ of the model depends on its architecture, its hypepa-
rameters etc. (i.e. θ ∼ p(θ|M), where M denotes a specific model architecture and its
hypeparameters). Therefore, the current uncertainty based active learning can only acquire
data with respect to a specific model structure M. However, in a fast growing field like
machine learning, the current state-of-the-art model structures could be replaced by the
better and more powerful ones every few months. If the data we acquired through active
learning are based on, for example, the predictive entropy of a past modelM1, such labelled
data might not be informative for the newer model M2 as they are biased towards M1.

As always, we would like to cut the cost in data labelling and avoid acquiring and relabelling
the same data set X when we move on to a newer model. Hence, the acquired data should
be representative and not bias towards a specific model.

Representiveness and Data Density

Uncertainty based acquisition can also suffer from selecting the outliners as they have high
uncertainty [McCallum and Nigam, 1998] but not being representative. Therefore, including
the two scenarios mentioned before, we would like to put representiveness into consideration
during the acquisition of data from U . Similar to informativeness, we need to define a
tangible measure for representiveness. Data density p(x) is used widely in active learning
literature to interpret the meaning of representiveness. Given two data points x1,x2, it is
reasonable to say that x1 is more representative than x2 if p(x1) > p(x2).

There are several attempts to extract density information through clustering [Nguyen and
Smeulders, 2004, Xu et al., 2003, Donmez et al., 2007]. Some tried to estimate the density
p(x) directly with naive Bayes [McCallum and Nigam, 1998], but naive Bayes is not an
accurate estimator because of its strong independence assumptions between the features.
Ideally, in order to accurately measure the representiveness of a data sample, we want
to create a parametric distribution pθ(x) and make it as close to the underlining p(x) as
possible. This can now be better achieved through deep generative models. However, to the
best of our knowledge, deep generative models have not been exploited in active learning
for density estimation, which motivates us to incorporate deep generative models into active
learning.

8



1.3. CONTRIBUTIONS

L at
Training

U at
Training

U at
Acquisition

Model
p(y|x)

Model
p(x)

Supervised Model (SM) X - - X -
Semi-Supervised Model (SSM) X X - X -
Semi-Supervised
Generative Model (SSGM)

X X - X X

AL with SM X - X X -
AL with SSM X X X X -
AL with SSGM X X X X X

Table 1.1: Properties of different types of models and their conjunctions with Active
Learning (AL). We use L to denote labelled data and U to denote unlabelled data.

1.2.3 Trade-off Between Informative and Representative Data

From the two motivations above, it is easy to see that semi-supervised generative models
are good candidates to be explored in active learning (see Table 1.1 for comparisons). By
using semi-supervised generative models in active learning, we can utilise unlabelled data
during the training step and take advantage of density information from pθ(x).

However, there is clearly a trade-off between acquiring informative data and acquiring rep-
resentative data. The high uncertainty data of pθ(y|x) are very often located close to the
decision boundary [Huang et al., 2010], which are less representative in terms of the density
p(x). In contrast, the high density data are located around the modes of the distribution
p(x), which might not be informative if we want to closely estimate the decision boundary.

There are lots of heuristics around this topic [Huang et al., 2010, Donmez et al., 2007,
Xu et al., 2003]. Nevertheless, semi-supervised generative models can give us a different
perspective to approach this trade-off, because their learning objectives naturally model
p(y|x) and p(x), which might provide us a straightforward trade-off between informativeness
and representiveness during acquisition.

1.3 Contributions

In this project, our main contributions are:

• We create a new active learning scheme using semi-supervised generative model. We
explore its performance through various experiments and show that the new scheme
outperforms our baselines when using simple acquisition functions like predictive en-
tropy.2

• With our new active learning scheme, we further create new acquisition functions
aim for the trade-off between informative and representative data. We test these new
acquisition functions and identify valuable challenges in acquiring representative data.

2Our proposed methods and the results in this project will be submitted to the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS 2021).
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1.4. THESIS STRUCTURE

1.4 Thesis Structure

In this chapter, we give an introduction into the popular uncertainty based active learning
scheme and discuss the limitations in this scheme which motivates our idea of using semi-
supervised generative model in active learning. At the end of the chapter, we summarise
our main contributions in this project. In chapter §2, we go through the concepts of deep
generative model, semi-supervised learning and semi-supervised generative model, which
further clarify the intuition behind our project. In chapter §3, we specify the details of
how to combine semi-supervised generative model with active learning and propose three
acquisition functions. Next, we test the performance of our methods. The results of the
experiments are plotted and analyse in chapter §4. For some of our unsatisfying experiment
results, we identify their causes and document them in chapter §5 for future investigation.
In the end of chapter §5, we also provide a summary for the project.
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Chapter 2

Background

The semi-supervised generative model used in the project touches two different concepts,
which are semi-supervised learning and deep generative model. In this chapter, we walk
through the necessary details behind these ideas and provide a background for our methods
in the next chapter.

2.1 Deep Generative Model

Generative model is a concept from probabilistic modelling, which tries to model the gen-
erating process of some random data. A simple example will be creating a model pθ(x)
through samples {xi}ni=1 generated from p(x) to approximate p(x). A more complicated
and useful generative model assumes the existence of some latent structures behind x, e.g.
x depends on the latent variable z. In this section, we introduce the idea behind probabilis-
tic model, latent variable model and how to do learning and inference on these models. In
the end, we use an example of deep generative model (i.e. VAE) to connect these concepts
together.

2.1.1 Probabilistic Model

In probabilistic modelling, we assume data are random samples from an underlying dis-
tribution that encodes the unknown data generating process. In an unsupervised learning
problem, we are given a set of data X = {xi}ni=1 independently and identically sampled (i.e.
i.i.d. data1) from p(x), our goal is to use a model pθ(x) with parameters θ to approximate
p(x) as accurately as possible so that for any x′ we have

pθ(x
′) ≈ p(x′). (2.1)

Similarly, for supervised learning problems such as classification, we are given i.i.d. labelled
data set (X, Y ) = {(xi, yi)}ni=1 and would like to model the underlying conditional distribu-
tion p(y|x) with pθ(y|x), where θ denotes the model parameters. Likewise, we want pθ(y|x)

1i.i.d. stands for independently and identically distributed
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2.1. DEEP GENERATIVE MODEL

to be as close to p(y|x) as possible, which means for any pair (x′, y′) we have

pθ(y
′|x′) ≈ p(y′|x′). (2.2)

Once we have the optimal θ∗, we can use pθ∗(y|x) to predict the class y∗ of a new input x∗:

y∗ = arg max
y

pθ∗(y|x∗). (2.3)

2.1.2 Learning

After choosing a model, say pθ(x), for our tasks, we need to find the θ∗ that gives us the
best approximation of p(x). This process is called learning. To better explain the process
of learning, let us rewrite pθ(x) to p(x|θ), which preserves the same meaning (i.e. given θ,
the probability of seeing x). With our training data X = {xi}ni=1, we are interested in the
posterior distribution of θ, which can be derived through Bayes’ theorem:

p(θ|X) =
p(X|θ) · p(θ)

p(X)
. (2.4)

p(X|θ) is known as the likelihood for X, p(θ) is the prior belief of θ and p(X) is the evidence.
Following are two popular perspectives for the same learning objective.

Maximum Likelihood Learning

In many cases, since we do not have prior knowledge about θ, we will use an ‘uniform’ prior
for θ, which means p(θ) is a constant C. Therefore, our learning objective is

θ∗ = arg max
θ

p(θ|X) = arg max
θ

p(X|θ) · C
p(X)

= arg max
θ

p(X|θ). (2.5)

In other words, the θ that maximises the posterior p(θ|X) is the same one that maximises the
likelihood p(X|θ). Hence, we call it maximum likelihood learning. We can further simplify
Eq.(2.5) and represent the learning objective only with our model pθ(x):

θ∗ = arg max
θ

p(X|θ) (2.6)

= arg max
θ

log p({xi}ni=1|θ) (2.7)

= arg max
θ

log

n∏
i=1

p(xi|θ) (2.8)

= arg max
θ

n∑
i=1

log pθ(xi) (2.9)

= arg min
θ

−
n∑
i=1

log pθ(xi). (2.10)

The final term −
∑n
i=1 log pθ(xi) is known as negative log-likelihood. The original maximi-

sation objective is now written as a minimisation task. It is common to represent a learning
problem as a minimisation task, as we can make use of the existing optimisation tools such
as gradient descent to solve it. By now, we have transformed our learning problem into a

12



2.1. DEEP GENERATIVE MODEL

simple optimisation task.

Kullback-Leibler Divergence

Our initial goal is to find a close estimate for an unknown distribution p(x) with a chosen
model pθ(x). A straight forward idea to solve this problem is to find the θ that minimise the
‘distance’ between this two distributions. Kullback-Leibler(KL) divergence [Kullback and
Leibler, 1951] is a measure of the difference between two distributions

KL[p||q] =

∫
p(x) log

p(x)

q(x)
dx =

〈
log

p(x)

q(x)

〉
p(x)

= 〈log p(x)− log q(x)〉p(x). (2.11)

KL divergence has the property that KL[p||q] ≥ 0 for any pair of distributions, and KL[p||q] =
0 if and only if p(x) = q(x). In the literature, it is common to denote an unknown distribu-
tion as p and denote our modelling distribution as q. Another property is that KL divergence
is not symmetric, i.e. KL[p||q] 6= KL[q||p]. We call KL[p||q] the forward KL, minimising it
will prioritise finding the q that match its mean with the mean of p. KL[q||p] is referred as
the reverse KL, which tends to select a q that matches a mode of p [Goodfellow et al., 2016].
Depends on our priority, we can choose the one that fits our need.

Following our example, we can try to find the θ that minimise the forward KL between p(x)
and pθ(x):

θ∗ = arg min
θ

KL[p(x)||pθ(x)] (2.12)

= arg min
θ
〈log p(x)− log pθ(x)〉p(x) (2.13)

= arg min
θ
〈log p(x)〉p(x) − 〈log pθ(x)〉p(x) (2.14)

= arg min
θ

−〈log pθ(x)〉p(x). (2.15)

However, as we do not know the distribution p(x), we can only use the limited samples in
our training set X to approximate it:

arg min
θ

−〈log pθ(x)〉p(x) ≈ arg min
θ

− 1

n

n∑
i=1

log pθ(xi). (2.16)

Therefore, the θ∗ that minimises KL[p(x)||pθ(x)] is:

θ∗ = arg min
θ

− 1

n

n∑
i=1

log pθ(xi) (2.17)

= arg min
θ

−
n∑
i=1

log pθ(xi), (2.18)

which is exactly the θ∗ that minimises the negative log-likelihood in Eq.(2.10). Hence,
minimising the forward KL is the same as maximum likelihood learning.
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2.1. DEEP GENERATIVE MODEL

2.1.3 Latent Variables

Our model pθ(x) from above usually has a simple closed-form expressions (e.g. pθ(x) =
N (µ, σ2) a Gaussian distribution with θ = {µ, σ}). Such model is likely to suffer from the
lack of expressiveness for many practical learning problems. To increase the expressiveness
of our model and to capture the underlying generative process more accurately, we can
introduce latent (hidden) variables into the model. Now, we can update our model to be
pθ(x, z), where z denotes the latent variable. It is called latent variable because unlike x,
we cannot observe z from our data set. The new model pθ(x, z) can capture the dependence
relation between x and z. For example, the factorisation pθ(x, z) = pθx(x|z) · pθz (z) implies
a latent structure that x depends on z, where θ = {θx, θz}. In addition, we also need to
define the distribution pθz (z) for z based on our belief of the underlying latent process. With
the latent variable, our the model for p(x) becomes

pθ(x) =

∫
pθ(x, z) dz. (2.19)

Similarly, we would like to use maximum likelihood learning to find the optimal θ∗.

2.1.4 Learning with Latent Variables

Following Eq.(2.10), we have:

θ∗ = arg max
θ

n∑
i=1

log pθ(xi) (2.20)

= arg max
θx,θz

n∑
i=1

log

∫
pθ(xi, z) dz. (2.21)

There is a challenges for doing maximum likelihood learning here. Since z is a latent variable
and we do not have observable samples of z, maximisation is not straightforward.

Free Energy

One idea is to optimise over an alternative objective. Let us rewrite the log likelihood from
Eq.(2.21) with a single observation X = {x} for simplicity:

log pθ(x) = log

∫
pθ(x, z) dz. (2.22)

Jensen’s inequality [Jensen et al., 1906] states that for a probability measure α and a concave
function f(·), we have

f (〈x〉α) ≥ 〈f (x)〉α . (2.23)
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2.1. DEEP GENERATIVE MODEL

Since log(·) is a concave function, for any distribution q(z) over the latent variable z, there
is a lower bound for the log likelihood:

log pθ(x) = log

∫
pθ(x, z) · q(z)

q(z)
dz (2.24)

= log

〈
pθ(x, z)

q(z)

〉
q(z)

(2.25)

≥
〈

log
pθ(x, z)

q(z)

〉
q(z)

(2.26)

= 〈log pθ(x, z)〉q(z) + H[q(z)] (2.27)

def
= F(q, θ). (2.28)

We call the lower bound F(q, θ) free energy, which is also known as Evidence Lower Bound
(ELBO) [Blei et al., 2017] in literature. It can also be rewritten as

F(q, θ) = 〈log pθ(x, z)〉q(z) + H[q(z)] (2.29)

= 〈log pθ(x, z)− log q(z)〉q(z) (2.30)

=

〈
log

pθ(x, z)

q(z)

〉
q(z)

(2.31)

=

〈
log

pθ(z|x) · pθ(x)

q(z)

〉
q(z)

(2.32)

=

〈
log

pθ(x)

q(z)

〉
q(z)

+

〈
log

pθ(z|x)

q(z)

〉
q(z)

(2.33)

= log pθ(x)−KL [q(z)||pθ(z|x)] . (2.34)

From the properties of KL divergence, we know that when q(z) = pθ(z|x), the value of
KL [q(z)||pθ(z|x)] = 0, which also leads to F(q, θ) = log pθ(x).

Expectation Maximisation

We can now use free energy for our optimisation. Instead of trying to find the θ that
maximise the log likelihood log pθ(x), the new objective is to find θ and q(z) that maximise
the lower bound F(q, θ). Expectation Maximisation (EM) algorithm suggests an iterative
approach [Dempster et al., 1977]. It starts with arbitrary values of parameters θ = {θx, θz},
then iterates two steps till F converged, which is guaranteed [Wu, 1983]. At k-th iteration,
we have:

• E-step: Fix parameters θ, maximise F(q, θ) w.r.t. q(z). From Eq.(2.34), we know
this maximum is achieved when q(z) = pθ(z|x), thus

q(k)(z) := arg max
q(z)

F(q, θ(k−1)) = pθ(k−1)(z|x)

• M-step: Fix q(z), maximise F(q, θ) w.r.t. parameters θ. From Eq.(2.29), we know
the entropy term H[q(z)] does not depend on the parameters θ, thus

θ(k) := arg max
θ

F(q(k−1), θ) = 〈log pθ(x, z)〉q(k−1)(z) .
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2.1. DEEP GENERATIVE MODEL

With EM, we do not need to worry about the latent z being not observable. For simple
model that has a closed form posterior pθ(z|x), it is easy to perform EM. However, it can
be intractable if we cannot infer the posterior pθ(z|x) in the E-step or if we cannot calculate
the expectation in the M-step.

Variational Inference

Following Bayes’ theorem, to infer the posterior pθ(z|x), we have

pθ(z|x) =
pθ(x|z) · pθ(z)

pθ(x)
, (2.35)

which has the integral pθ(x) =
∫
pθ(x, z) dz. However, for many interesting problems, the

integral may not have a closed form solution or we cannot differentiate it. Thus, it is often
intractable to do exact inference in latent variable models. Instead, we can use variational
method to do approximate inference.

The idea for variational inference is that rather then simply using the posterior pθ(z|x)
as the distribution q(z), we choose q(z) from a constraint variational family Q. If Q is a
set of tractable distributions, then the problem becomes tractable. In other words, we can
use tractable distributions from Q to approximate the intractable posterior pθ(z|x). The
cost for such approximation is that we may not converge to the maximum log likelihood
log pθ(x), because from Eq.(2.34) we know that if pθ(z|x) /∈ Q the KL [q(z)||pθ(z|x)] 6= 0.
To minimise the approximation error, we often choose q(·) to has the same conditional form
as the posterior, i.e. q(z|x). The optimisation objective can be updated to

• E-step:
q(k)(z|x) := arg max

q(z|x)∈Q
F(q, θ(k−1))

• M-step: (Unchanged)

θ(k) := arg max
θ

F(q(k−1), θ) = 〈log pθ(x, z)〉q(k−1)(z|x)

There are several methods to pick the variational family Q. One is to define Q as a paramet-
ric family q(z; fφ(x)) such that qφ(z|x) ∈ q(z; fφ(x)). For example, let Q be a Gaussian dis-
tribution parameterised with neural networks (i.e. q(z; fφ(x)) = N (fφµ(x), fφσ (x))), where
fφµ(·) and fφσ (·) are neural networks with weights φ = {φµ, φσ}. These mapping function f
are also known as recognition models. Thus, with parametric variational methods, choosing
the optimal q ∈ Q w.r.t. F is the same as choosing the optimal φ for q(z; fφ(x)) w.r.t. F .
And we can rewrite F(q, θ) as F(φ, θ). The E-step becomes

φ(k) := arg max
φ

F(φ, θ(k−1)).

Our goal is now to maximise

F(φ, θ) = 〈log pθ(x, z)〉qφ(z|x) + H[qφ(z|x)] (2.36)

= 〈log pθ(x|z)〉qφ(z|x) + 〈log pθ(z)〉qφ(z|x) − 〈log qφ(z|x)〉qφ(z|x) (2.37)

= 〈log pθ(x|z)〉qφ(z|x) −KL [qφ(z|x)||pθ(z)] (2.38)
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2.1. DEEP GENERATIVE MODEL

w.r.t. the variational parameters φ and generative parameters θ. Gradient based optimi-
sation is the common alternative when we do not have a closed form solution. The term
KL [qφ(z|x)||pθ(z)] has an analytical form representation, which is easy to differentiate.
However, taking the gradient of F(φ, θ) w.r.t. φ requires us to differentiate an expectation
〈h(z)〉qφ(z|x)2, which is a challenge.

Reparameterisation Trick

To solve the problem, we can reparameterise our random variable z ∼ qφ(z|x) as a de-
terministic variable given a random noise ε ∼ p(ε), i.e. z = gφ(x, ε), where gφ(·, ·) is
some deterministic mapping parameterised by φ. Therefore, the original expectation can be
rewritten as

〈h(z)〉qφ(z|x) = 〈h(gφ(x, ε))〉p(ε), (2.39)

which is differentiable w.r.t. φ and can be unbiasedly evaluated through Monte Carlo esti-
mate

〈h(gφ(x, ε))〉p(ε) ≈
1

N

N∑
n=1

h(gφ(x, ε(n))). (2.40)

Another advantage for reparameterising the variational distribution qφ(z|x) is that we can
now combine the E-step and M-step together. So we can optimise F(φ, θ) w.r.t. φ and θ at
the same time by gradient descent.

2.1.5 Variational Autoencoder

Variational Autoencoder (VAE) provides us an example of how to do learning and inference
in deep latent variable models [Kingma and Welling, 2014], which combines all the concepts
above. Again, we would like to model p(x) through training set X = {xi}ni=1 and assume x
is generated from latent z through conditional distribution p(x|z). The prior for our latent
z is set to be a multivariate Gaussian p(z) = N (0, I), where 0 denotes a vector of 0 and I
denotes an identity matrix.

Decode: If x is in the form of binary vector, we can use Bernoulli distributions for our
model pθ(x|z). It means that given a latent z′, the resulting Bernoulli parameters are
p′ = decoderθ(z

′) = pθ(x|z′), where decoderθ(·) is a neural network with weights θ. A
sample can be generated by drawing x′ from Bernoulli distribution Bernoulli(p′). We
call the model for pθ(x|z) as decoder because we can generate (decode) x from the hidden
(encoded) z.

Encode: Since the true posterior pθ(z|x) is intractable, we use a variational distribution
qφ(z|x) to approximate it. We assume the posterior can be approximated using diagonal
Gaussian as the variational family qφ(z|x) = N (µx,σ

2
xI). µx and σ2

x are the mean and
diagonal variance of the distribution, which are output of the recognition function (µx,σx) =
encoderφ(x). encoderφ(·) is a neural network with parameters φ. Given an input x′, we
can sample z from the posterior qφ(z|x′) by: First, pass x′ into the encoder (µx′ ,σx′) =
encoderφ(x); Then, with the reparameterisation trick, we have z′ = µx′ + σx′ � ε, where
ε ∼ N (0, I) and � denotes element-wise product. We call the model for qφ(z|x) as encoder,
since it encodes x into its latent form.

2For simplicity, here we use h(z) to denote any function depends on z, such as log pθ(x|z).
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2.2. SEMI-SUPERVISED LEARNING

With p(z), pθ(x|z) and qφ(z|x) defined, we can now maximise the free energy

F(φ, θ) = 〈log pθ(x|z)〉qφ(z|x) −KL [qφ(z|x)||pθ(z)]

using stochastic gradient descent3 (SGD) by taking its gradient w.r.t. φ and θ.

2.2 Semi-Supervised Learning

As mentioned briefly before, semi-supervised learning focuses on learning problems with
both labelled data L = {(xi, yi)}ni=1 and unlabelled data U = {(xj)}mj=1, where yi is the
label of xi. Instead of using only the labelled data, semi-supervised learning aims to utilise
both the labelled and unlabelled data to create models with better performance. In order to
improve the model performance using unlabelled data, there is a necessary condition in semi-
supervised learning needs to be satisfied, which is that the underlying marginal distribution
p(x) has to carry information that is useful to infer p(y|x) [Chapelle et al., 2010, Van Engelen
and Hoos, 2020]. By meeting this condition, we can learn information about p(x) from the
unlabelled data, then help with modelling p(y|x). If this condition is not met, the use of
unlabelled data will not improve our model of p(y|x) through semi-supervised learning.

A commonly used approach for semi-supervised learning is self-training [Zhu, 2005]. Its idea
is simply using the initial labelled data to train a classifier, then the trained classifier is used
to assign labels to the unlabelled data. The most confident set of these self-labelled data will
be added into the training set and retrain the model from the beginning. It is a repeated
procedure. Self-training has been used in various natural language processing and computer
vision tasks [Yarowsky, 1995, Riloff et al., 2003, Rosenberg et al., 2005]. More complicated
and powerful methods have been studied for the past two decades, which are well categorised
in semi-supervised learning survey papers [Zhu, 2005, Van Engelen and Hoos, 2020].

2.3 Semi-Supervised Generative Model

In classification and regression tasks, generative models are used to estimate the joint dis-
tribution p(y,x). For classification tasks, it is easy to see the connection of modelling the
labelled data and unlabelled data from the marginalisation p(x) =

∑
y∈Y p(y,x). Therefore,

generative model can be a natural choice for semi-supervised learning. Previous research
has been focused on tractable models such as Gaussian mixture models [Zhu, 2005] and
non-parametric models like Gaussian Process [Adams and Ghahramani, 2009]. Recently, a
more general, flexible and scalable approach has been proposed, which is based on the ideas
from VAE [Kingma et al., 2014]. In their paper, this deep generative model is denoted as
M2. To be consistent with their paper, we will use the name M2 in this report as well.

In the semi-supervised generative setting of M2, we are given both the labelled data L =
{(xi, yi)}ni=1 and unlabelled data U = {(xj)}mj=1, where each observation xi ∈ RD and the
class label yi ∈ {1, . . . , L}. The empirical distributions over our data set L and U are referred
as pL(x, y) and pU (x) in order to differentiate it from the underlying unknown distributions
p(x, y) and p(x).

3Gradient ascent in this expression. Or gradient descent with negation of F .
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2.3. SEMI-SUPERVISED GENERATIVE MODEL

2.3.1 Modelling Assumptions

In M2, we assume that the data x is generated from a discrete latent class y and a continuous
latent representation z. Let the prior of y to be a categorical distribution with initial
parameter π and the prior of z to be a centred isotropic multivariate Gaussian N (0, I),
where the mean 0 is a vector of 0 and the covariance matrix I is an identity matrix. Given
y and z, x is generated from pθ(x|y, z), which can be set to a suitable distribution such as
a Gaussian or Bernoulli with its parameters output from decoder networks with weights θ.
When we are given unlabelled data, y will be treated as a latent variable. Based on our
assumptions, y and z are marginally independent and x depends on both of them, the latent
variable z is expected to capture the class invariant information and y is expected to capture
the class specific information. For example, when we are modelling hand written digits, y
will capture the digit class and z will capture the writing style. At the moment, we have
made assumptions for

p(y) = Cat(π), p(z) = N (0, I), pθ(x|y, z).

From previous sections, we know that to do learning with such latent variable model requires
the inference of posterior distribution. In addition, for classification tasks, the posterior
distribution p(y|x) can be used for predicting the missing labels. However, just like VAE,
the exact inference for the posterior is intractable.

2.3.2 Learning and Inference

Instead of exact inference, M2 makes use of variational inference to approximate the pos-
terior. The variational distribution qφ(y, z|x) is created for approximating the posterior
p(y, z|x), which can be factorised as

qφ(y, z|x) = qφ(z|x, y) · qφ(y|x).

The inference model for qφ(z|x, y) is specified as a diagonal Gaussian distribution, and the
model for qφ(y|x) is specified as a Categorical distribution:

qφ(z|x, y) = N (µx,y,σ
2
x,yI), (µx,y,σx,y) = encoderφz(x, y),

qφ(y|x) = Cat(πx), πx = encoderφy (x),

where encoderφz(·) and encoderφy (·) are neural networks parameterised by φz and φy that
output the corresponding distribution parameters. With all the necessary distributions
defined, we can write down the free energy as our learning objective.

For Labelled Data

When labelled data are given, both x and y are observed, the only latent variable is z. Then,
the free energy is the lower bound for the join distribution

log pθ(x, y) ≥ 〈log pθ(x, y, z)− log qφ(z|x, y)〉qφ(z|x,y) (2.41)

= 〈log pθ(x|y, z) + log p(y) + log p(z)− log qφ(z|x, y)〉qφ(z|x,y) (2.42)

def
= −L(x, y) (2.43)
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2.3. SEMI-SUPERVISED GENERATIVE MODEL

For Unlabelled Data

When unlabelled data are given, only x is observed, both y and z are latent variables. The
resulting lower bound is

log pθ(x) ≥ 〈log pθ(x, y, z)− log qφ(y, z|x)〉qφ(y,z|x) (2.44)

= 〈log pθ(x|y, z) + log p(y) + log p(z)− log qφ(y, z|x)〉qφ(y,z|x) (2.45)

=
〈
〈log pθ(x|y, z) + log p(y) + log p(z)− log qφ(z|x, y)− log qφ(y|x)〉qφ(z|x,y)

〉
qφ(y|x)

=
〈
〈log pθ(x|y, z) + log p(y) + log p(z)− log qφ(z|x, y)〉qφ(z|x,y)

〉
qφ(y|x)

+ H(qφ(y|x))

= 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)) (2.46)

=
∑
y

qφ(y|x) · (−L(x, y)) + H(qφ(y|x)) (2.47)

def
= −U(x) (2.48)

Therefore, the optimisation objective for the entire training set including both labelled and
unlabelled data is to minimise the following:

J =
∑

(x,y)∼pL

L(x, y) +
∑
x∼pU

U(x), (2.49)

where pL is the empirical distribution of labelled data, pU is the empirical distribution of
unlabelled data. This objective directly indicates how labelled and unlabelled data are
used during the training of the generative model, which is what makes it a semi-supervised
generative model.

The inference model qφ(y|x) from Eq.(2.47) can be used as a discriminative classifier. How-
ever, it only gets triggered from the unlabelled data in the training objective Eq.(2.49),
which means labelled data are not used for training qφ(y|x). It is obviously not desirable
if we would like to use qφ(y|x) as a classifier. To make sure qφ(y|x) also learns from the
labelled data, the authors extend the learning objective from Eq.(2.49) with an additional
classification loss [Kingma et al., 2014]:

J α = J + α · 〈− log qφ(y|x)〉pL(x,y), (2.50)

where α is a hyperparameter for weighting the discriminative learning and the generative
learning. In our experiments, we use the same α = 0.1 ·n as in the paper, where n represents
the number of labelled training data.

With the objective Eq.(2.50), we can simply take the gradient w.r.t. θ and φ with reparam-
eterisation trick, and use stochastic gradient descent to train the model.
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Chapter 3

Active Learning with

Semi-Supervised Generative

Model

In previous chapters, we introduce the concept of active learning as well as semi-supervised
generative model. In this chapter, we look at how semi-supervised generative models, the
M2 model in particular, can be integrated with active learning procedure. We also propose
new acquisition functions that take into account the unique properties of the semi-supervised
generative model.

3.1 Correctness of the Model

Before using the M2 model in active learning, we would like to make sure the model itself
is asymptotically correct, which was not proved in its original paper [Kingma et al., 2014].
In other words, if the variable x is indeed generated from our model pθ(x|y, z) with the
real parameters θ∗, then as the number of training data approaches infinity, minimising the
training objective in Eq.(2.49) and Eq.(2.50) should give us the real θ = θ∗.

3.1.1 Proof of Objective J

We first start with the objective in Eq.(2.49)

J =
∑

(x,y)∼pL

L(x, y) +
∑
x∼pU

U(x).

[Proof 1] Assume the real θ for the likelihood pθ(x|y, z) is θ∗, then the training data are
generated by pθ∗(x, y). Note that from Eq.(2.43) and Eq.(2.48), we have log pθ(x, y) ≥
−L(x, y) and log pθ(x) ≥ −U(x). Therefore, if the number of samples in our training set
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approaches infinity, the objective Eq.(2.49) can be rewritten as:

J ∗ = 〈L(x, y) + U(x)〉pθ∗ (x,y) (3.1)

≥− 〈log pθ(x, y) + log pθ(x)〉pθ∗ (x,y) (3.2)

=− 〈log pθ(x, y)〉pθ∗ (x,y) − 〈log pθ(x)〉pθ∗ (x,y) (3.3)

=− 〈log pθ(x, y)〉pθ∗ (x,y) − 〈log pθ(x)〉pθ∗ (x) (3.4)

=KL [pθ∗(x, y)||pθ(x, y)] + KL [pθ∗(x)||pθ(x)] + const. (3.5)

Hence, minimising J ∗ will minimise

KL [pθ∗(x, y)||pθ(x, y)] + KL [pθ∗(x)||pθ(x)] + const.,

which achieves its minimum value when θ = θ∗.

3.1.2 Proof of Objective J α

Then we can prove the objective in Eq.(2.50)

J α = J + α · 〈− log qφ(y|x)〉pL(x,y).

[Proof 2] Similarly for Eq.(2.50), since the real pθ∗(x, y) can be factorised as pθ∗(x)·pθ∗(y|x),
we have:

J α∗ (3.6)

≥J ∗ + α · 〈− log qφ(y|x)〉pθ∗ (x,y) (3.7)

=J ∗ + α ·
〈
〈− log qφ(y|x)〉pθ∗ (y|x)

〉
pθ∗ (x)

(3.8)

=J ∗ + α ·
〈
〈− log qφ(y|x) + log pθ∗(y|x)〉pθ∗ (y|x)

〉
pθ∗ (x)

+ α · 〈H [log pθ∗(y|x)]〉pθ∗ (x) (3.9)

=J ∗ + α · 〈KL[pθ∗(y|x)||qφ(y|x)]〉pθ∗ (x) + α · 〈H [log pθ∗(y|x)]〉pθ∗ (x) (3.10)

≥KL[pθ∗(x, y)||pθ(x, y)] + KL[pθ∗(x)||pθ(x)] + α · 〈KL[pθ∗(y|x)||qφ(y|x)]〉pθ∗ (x)
+ const. (3.11)

Thus, the minimum of J α∗ is achieved when θ = θ∗ and qφ(y|x) = pθ∗(y|x). With the
two proofs, we know that the training objective for the semi-supervised generative model is
indeed asymptotically correct.

3.2 Integrating the Model with Active Learning

The implementation is relatively straightforward. In the k-th training step of our active
learning loop, we use the M2 model and train it with both labelled Lk and unlabelled data
Uk on the objective function Eq.(2.50) till convergence. Then, in the acquisition step, each
unlabelled data x ∈ Uk will be passed into an acquisition function A(x) for scoring. Based
on the acquisition scores, a subset of unlabelled data will be assigned with their real labels
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O(x) and moved into the labelled data set. Next, the updated data sets Lk+1 and Uk+1

will be used to retrain the M2 model, and the process repeats for K iterations, where K
is a hyperparameter represents the maximum number of active learning loop to be run.
Note that in our experiments, we only acquire a single unlabelled data in each iteration.
In addition, since labelling oracle does not exist, we simulate such process by dividing our
original labelled training set D into L and U , where labels in U are hidden from the model
and it is only revealed when a data is acquired. This new active learning procedure is
summarised in Algorithm 1.

Algorithm 1: Active Learning Procedure with Semi-Supervised Generative Model

1 Given L1, U1, K and A(·)
2 Define p(z), p(y), pθ(x|y, z), qφ(y|x), qφ(z|y,x)

/* Active Learning Loop */

3 for k ∈ {1, . . . ,K} do

/* 1.Training */

4 Initialise φ, θ
5 while J α has not converged do
6 ∀xi ∈ Uk and (xi, yi) ∈ Lk
7 yi ∼ qφ(yi|xi) if xi ∈ Uk
8 zi ∼ qφ(zi|yi,xi)
9 J α ← Eq.(2.50)

10 (θ, φ)← (θ, φ) + (∂J
α

∂θ ,
∂Jα
∂φ )

/* 2.Acquisition */

11 x′ = arg max x∈Uk A(x, pθ(x|y, z), qφ(y|x), qφ(z|y,x))
12 Uk+1 ← Uk \ {x′}
13 Lk+1 ← Lk ∪ {(x′,O(x′))}

3.3 Acquisition

By replacing the usual discriminative model with semi-supervised generative model, we are
given the ability to estimate the density of any given data log pθ(x). Hence, we can design
new acquisition functions that utilise the density information.

3.3.1 With Entropy

The inference model qφ(y|x) has the form of a discriminative classifier, and it is used for
predicting the labels of unseen data. Therefore, the simplest idea is to use the predictive
entropy of qφ(y|x) as an acquisition function

AH(x) = H[qφ(y|x)]. (3.12)

Even though using predictive entropy for acquisition is not a new idea, the predictive dis-
tributions are modelled differently. In our case, the predictive distribution comes from the
inference model qφ(y|x), which is trained with both the unlabelled data in the generative ob-
jective Eq.(2.47) and the labelled data in the additional discriminative objective Eq.(2.50).
In the usual active learning settings, the predictive distribution is only trained with labelled
data and classification loss. By taking into account the generative process and the density
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pθ(x), qφ(y|x) should be a better estimate for the distribution p(y|x). Hence, it should
acquire more informative data.

3.3.2 With Linear Combination of Entropy and Density

Since the new model can estimate the data density pθ(x) as well as the entropy, we can
create an acquisition function that combines both information. Ideally, by considering both
entropy and density, we are able to acquire data that are both informative and representative.
Following Eq.(2.43), i.e.:

log pθ(x) ≥ 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)).

We can write our acquisition function as:

Aγ(x) = γ · 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)). (3.13)

When γ = 0, we have the predictive entropy, when γ = 1, we have the lower bound for
log pθ(x). Therefore, γ might be viewed as a trade-off parameter s.t. γ ∈ [0, 1]. During
acquisition, we select the unlabelled data which has the highest acquisition score Aγ(x).

Using only the predictive entropy (i.e. γ = 0), the acquisition function will select the
unlabelled data x′ with the highest predictive entropy, in other words, the model is most
uncertain about the label y′ of x′. However, such data point might be an outlier in the
dataset (i.e. pθ(x

′) is low). In contrast, with only the data density pθ(x) (i.e. γ = 1), the
acquisition function will pick the most likely data with arg max x pθ(x) regardless of the
predictive distribution qφ(y|x). Therefore, the representative data of the unlabelled set with
consideration of the current task p(y|x) is likely to be acquired when γ ∈ (0, 1), which means
we can acquire data that has both high predictive entropy and high data density.

The above acquisition function Eq.(3.13) can also be derived from the goal that we would
like to acquire data with both high predictive entropy H(qφ(y|x)) and high density pθ(x).
By using a trade-off parameter β ∈ [0,∞) between predictive entropy and the density, we
have:

Aβ(x) = β · log pθ(x) + H(qφ(y|x)) (3.14)

≥ β · 〈−L(x, y)〉qφ(y|x) + β ·H(qφ(y|x)) + H(qφ(y|x)) (3.15)

= β · 〈−L(x, y)〉qφ(y|x) + (β + 1) ·H(qφ(y|x)) (3.16)

∝ β

β + 1
· 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)) (3.17)

= γ · 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)) (3.18)

= Aγ(x) (3.19)

where γ = β
β+1 . Since β ∈ [0,∞), we have γ ∈ [0, 1], therefore Aβ(x) is the same as Aγ(x).

3.3.3 With Ordered Filtering of Entropy and Density

Another idea for acquisition is to use the predictive entropy and the density sequentially
as separate selection criteria. For example, during the acquisition step, we can first select
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3.3. ACQUISITION

a subset of M unlabelled data among U , which have the M highest density values. Then,
within the subset, we choose the data with highest predictive entropy. From the previous
section, we know that when γ = 1, A1(x) represents the lower bound of the density log pθ(x),
and when γ = 0, A0(x) = AH(x). Thus, the acquisition process can be written as

1. Filtering out the low density data

{x∗m}Mm=1 = arg max
{xm}Mm=1∈U

M∑
m=1

log pθ(xm) = arg max
{xm}Mm=1∈U

M∑
m=1

A1(xm).

2. Selecting data with the highest predictive entropy

x′ = arg max
x∈{x∗m}Mm=1

A0(x).

Ideally, by first selecting a subset of data based on high density, we can filter out the outliers
and avoid acquiring the data with high uncertain but low density.
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Chapter 4

Experiments

To verify whether our new active learning settings can improve labels efficiency, experiments
have been conducted for the proposed acquisition functions. In this chapter, we will first go
through the setups of our experiments, then we will look at the performance and analysis
of the three proposed acquisition functions.

Our active learning algorithm is given in section §3.2. Additionally, in order to evaluate the
algorithm, we need to test the classification accuracy of the model trained at each active
learning loop. For example, if we would like to label 100 data and we only acquire a single
unlabelled data at each iteration of the active learning loop, then we will train 100 models
during a single run of the algorithm. At the end of each iteration, we use the same test data
to test the corresponding model for its accuracy. The model trained with more labelled data
should result in higher test accuracy. An example to illustrate the idea is showed in Figure
4.1.

Figure 4.1: An example illustrating how active learning can be evaluated. The
x-axis represents the amount of labelled data used for training. The y-axis represents
the test accuracy for different models.

When comparing two active learning algorithms, we will expect the one with a better per-
formance to plot its accuracy higher. It means that with the same amount of labelled data,
one model outperforms the other. If the two models have the similar expressiveness, then
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4.1. SPECIFICATION

such difference in performance is likely caused by the difference in the labelled data, which
is the result of the distinct acquisition functions and the different active learning settings.

REMARK 2 (Model Expressiveness) Expressiveness is a concept from learning the-
ory, which describes the ability of a model to capture complex functions. A more expressive
model has the ability to learn a more complex function. In the case of neural networks,
the expressiveness depends on the choice of architecture (including depth, width, layer types
etc.) [Raghu et al., 2017]. If two models have similar architectures, then they should be as
expressive as each other. The study of model expressiveness explains why we need ‘deep’ in
deep neural networks [Eldan and Shamir, 2016].

4.1 Specification

The implementations for our active learning algorithms and the experiments are in PyTorch
1.5.1 and Python 3.7. The source code for the project is hosted on GitHub for public
access1. Experiments were run on CPU as well as GPU.

We use two popular datasets for our experiments. One is the MNIST hand written dig-
its[LeCun et al., 2010], which has 10 classes from digit 0 to 9. Each data sample is a grayscale
image of size 28×28, where the pixel values have the range 0 to 255. In our experiments, we
standardise and threshold the grayscale images into binary images so that each pixel either
has the value 0 or 1.

The other dataset is the half-moon data, which is a 2D synthetic dataset consisting of two
interleaving half circles with optional Gaussian noise. The half-moon dataset provides us
the ability to visualise the behaviour of our models on a 2D plane. At the same time, it is
more challenging than linear classification tasks. To simulate the nosiness in the real world
dataset, we set the Gaussian noise to be large enough so that our half-moon dataset is not
linearly separable (see Figure 4.2). Moreover, we fixed the random seed for the Gaussian
noise so that the same dataset was used across all half-moon experiments.

Figure 4.2: The half-moon dataset used in our experiments. There are 1000 data
points in the set. The two colours denotes the two classes.

Since we are modelling the dataset using a generative model, we need to specify the genera-

1https://github.com/timxzz/AL-SSGM

27

https://github.com/timxzz/AL-SSGM


4.2. ACQUISITION WITH AH(·)

tive distribution pθ(x|y, z) for the data. The MNIST data are in the form of binary image.
Hence, we model them as a multivariate Bernoulli distribution

pθ(x|y, z) = Bernoulli(decoderθ(y, z)),

where decoderθ(·) is a neural network with weights θ. The half-moon data lie in a continuous
R2 plane. Therefore, we model them as a diagonal Gaussian distribution

pθ(x|y, z) = N (µy,z,σ
2
y,zI), (µy,z,σy,z) = decoderθ(y, z),

where decoderθ(·) is also a neural network with weights θ.

To show the possible improvements from our proposed active learning algorithms, we create
a baseline model for each dataset. Since we are focusing on classification tasks, we use a
simple classifier pψ(y|x) that has the same architecture as our inference model qφ(y|x) in
M2 as the baseline model. The baseline model is trained with maximum likelihood learning
under the usual active learning procedure with its predictive entropy as the acquisition func-
tion. Note that we make sure the baseline model pψ(y|x) has the same architecture(including
depth, width, layer types etc.) as qφ(y|x), which means two models have similar expressive-
ness. In addition, random seeds for weights initialisation and training/test set split are fixed
and reset for each experiment and each active learning loop. Therefore the difference in the
results should mainly come from the difference in active learning algorithms.

4.2 Acquisition with AH(·)

We start with our active learning experiments using semi-supervised generative model M2
and the acquisition function AH(x). For each dataset, we compare the performance of two
models (M2 and baseline). Additionally, we also compare data acquired through our AH(x)
with data randomly acquired from U . The acquisition function using randomise strategy is
a good baseline as it resembles the situation that no strategy is used while selecting data for
labelling. If the results of any designed acquisition are worse than the random acquisition,
it means it is better to not use active learning paradigm at all.

In the case of half-moon dataset, our experiments were done with 30 acquisitions. In addi-
tion, each experiment has 10 runs with different random seeds. The results are showed in
Figure 4.3. From the figure, we can see that acquisition with predictive entropy does outper-
form random acquisition for both M2 and the baseline model as expected. Moreover, when
using AH(x), the semi-supervised generative model M2 (red line) has significantly better
performance than the baseline (blue line) on the average of 10 runs. Another interesting
observation is that the baseline model has a much larger variance across different runs.

In order to find out why the semi-supervised generative model (M2) has a larger variance
than the baseline model, we have plotted the acquisitions and the resulting decision bound-
aries for both models in 4 random seeds using AH(x). The results are showed in Figure 4.4.
From the figure, it seems that the decision boundaries for the baseline model vary across the
4 different seeds, but the decision boundaries for M2 stay relatively the same. A reasonable
explanation is that our inference model qφ(y|x) is a better approximation to the underlying
conditional distribution p(y|x). Therefore, its predictive uncertainty tightly concentrates
on the decision boundary, whereas the baseline model pψ(y|x) scatter its uncertainty across
a large area (e.g. Figure 4.4(a)). The consequence is that the baseline model ‘explores’ a
larger area, hence results in larger variance.
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4.2. ACQUISITION WITH AH(·)

Figure 4.3: Experiments on the half-moon dataset with 30 acquisitions. We did 10
runs for each experiment with different random seeds. The solid lines are the means
of the 10 runs, and the shaded areas represent the standard error.

(a) Baseline seed = 0 (b) Baseline seed = 1 (c) Baseline seed = 2 (d) Baseline seed = 3

(e) M2 seed = 0 (f) M2 seed = 1 (g) M2 seed = 2 (h) M2 seed = 3

Figure 4.4: The acquisitions and decision boundaries for the baseline model and
the M2 model over 4 different random seeds. 30 acquisitions by predictive entropy
AH(x) are plotted for each run. The acquired data points that are labelled as the red
class are plotted in yellow circles. The acquired data points that are labelled as the
blue class are plotted in cyan circles. The two dark red and dark blue circles are the
initial labelled data, the light red and blue circles are the unlabelled data, the light
red and blue stars are the test data.

After the positive results from half-moon, we need to test our methods on higher dimensional
dataset such MNIST. Due to the computational complexity, our experiments for MNIST only
focus on binary classification. The original MNIST dataset has 10 digits. By using 2 classes
of digits, we can save the time on each pass of the dataset2. With two digits, each epoch takes
3 seconds for our M2 model on a GPU3. To train the model for MNIST binary classification
to convergence requires 30 epoch on average. Since we need to train 200 models for a single
run of active learning, it takes about 5 hours for each run. Hence, we only use 3 runs with
different random seeds for one experiment.

The results for the MNIST binary classification experiments are showed in Figure 4.5. We
choose digit 7 and 9 for the task because these two are hard to distinguish comparing to

2A single pass of dataset is known as an epoch.
3The GPU we used is a single Nvidia GTX1080.
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4.3. ACQUISITION WITH Aγ(·)

Figure 4.5: Experiments on MNIST binary classification on digit 7 and 9. The
experiments were done over 200 acquisitions. We did 3 runs for each experiment with
different random seeds. The solid lines are the means of the 3 runs, and the shaded
areas represent the standard error.

other pairs. In the figure, we can see that the baseline model with AH(x) has a better
performance when the number of labelled data is less then 110. When the number of
acquired data grows above 110, the M2 model AH(x) outperform the rest. It might seem
that the M2 model with entropy acquisition takes a long time to overtake the baseline, but in
the active learning literature similar MNIST binary classification experiments normally use
500 to 1000 acquisitions [Gal et al., 2017]. Therefore, our method is still better comparing
to the baselines.

4.3 Acquisition with Aγ(·)

In this section, we will test our active learning algorithm with the acquisition function from
Eq.(3.13)

Aγ(x) = γ · 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)).

Recall that the idea behind this acquisition function is to acquire data that are both infor-
mative and representative. In section 3.2, we argued that by changing γ from 0 to 1, the
data we acquired will locate closer to a mode of the density pθ(x) and further from the high
entropy region (e.g. decision boundary of pθ(y|x)). Hence, we can first design an experiment
to test the assumption.

To visualise how γ affect the acquisition, we use the half-moon dataset. In the experiment,
the semi-supervised generative model is given 5 labelled data for each class and 590 unla-
belled data U . After the training step has converged, we use the acquisition function Aγ(x)
to score every unlabelled data in U for 7 different γ ∈ {0.0, 0.167, 0.333, 0.5, 0.667, 0.833, 1.0}.
Then, we plot the unlabelled data with the highest acquisition score for each γ. The results
are showed in Figure 4.6. From the figure, we can verify that when γ = 0, the acquired data
(yellow circle) is on the decision boundary; and when γ = 1, the acquired data is a the centre
of pθ(x)’s modes. Other acquired data are indeed lying between the decision boundary and
the two centres of pθ(x)’s modes. If we look at the right column of the figure, we can see
how the contour lines of the acquisition score slowly transition as γ approaching 1. It seems
like the acquisition function Aγ(x) is working as we expected.
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4.3. ACQUISITION WITH Aγ(·)

Figure 4.6: Single data point acquired (yellow circle) by our proposed acquisition
function Aγ with γ ∈ {0.0, 0.167, 0.333, 0.5, 0.667, 0.833, 1.0} from top to bottom.
The contour lines in the left column represent the predictive density qφ(y|x), and
the contour lines in the right column represent the values of our acquisition function
(darker colour corresponds to larger Aγ(x)). The dark red and blue circles are the
labelled data, the light red and blue circles are the unlabelled data, the light red and
blue stars are the test data.
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4.3. ACQUISITION WITH Aγ(·)

Next, we test the acquisition function Aγ(x) in our active learning setting. We use the
half-moon dataset with 7 different γ ∈ {0.0, 0.167, 0.333, 0.5, 0.667, 0.833, 1.0} and acquire
10 data for each γ. Figure 4.7 shows the results of the experiments. From the figure, it is
obvious that γ = 0 has the best performance. Note that when γ = 0, the acquisition function
A0(x) is equivalent to AH(x). More importantly, the figure shows that when γ > 0, the
acquisition function Aγ(x) does not help with the performance at all.

Figure 4.7: Experiments on half-moon dataset using M2 model and acquisition
function Aγ(x). The plot shows the test accuracy across 10 acquisitions in a single
run for 7 different γ values.

To analyse the reason behind Figure 4.7, we plot the acquisitions and see where they cluster.
The results of 20 acquisitions a with 7 different γ are showed in Figure 4.8. In the figure,
we can see that when γ = 0 (i.e. AH(x)), the acquisitions scatter around the decision
boundary, which meets our expectation for acquisition using predictive entropy. However,
when γ ≥ 0.167, all the acquisitions concentrate in a small region. If we compare the centres
of these regions with the contour lines of Aγ(x) in Figure 4.6, we will see that they match
with the high value area of Aγ(x). This implies that the value of Aγ(x) hardly changes with
the acquisitions of new labelled data when γ ≥ 0.167.

Further analysis into the acquisition function Eq.(3.13)

Aγ(x) = γ · 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x))

and its components, we found out that the term 〈−L(x, y)〉qφ(y|x) in Aγ(x) dominates the
entire function. Since the value of 〈−L(x, y)〉qφ(y|x) is much larger than H(qφ(y|x)), linear
variation of γ and small changes in H(qφ(y|x)) does not have a huge impact on its final value.
Therefore, when γ ≥ 0.167, the acquisition function is density pθ(x) dominated, which gives
rise to such results.

To reduce the dominance of 〈−L(x, y)〉qφ(y|x), we also tried

A′γ(x) = γk · 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x)), (4.1)

where k is a hyperparameter with value k ≥ 1. If k > 1, the linear change of γ from 0 to 1
will result in much slower increase of 〈−L(x, y)〉qφ(y|x) when γ is close to 0. However, after
trying various k ∈ {1, 2, 3, 4}, the results are still not satisfying. Figure 4.9 shows the results
of experiments when using the above A′γ(x) with k = 4. It seems that the use of γk does
help, but still when γ ≥ 0.167, the performance is worse then γ = 0. The negative results
in the half-moon experiments of using acquisition function Aγ(x) did not encourage us to
move on to the similar experiments on MNIST dataset.
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(a) γ = 0 (b) γ = 0.167 (c) γ = 0.333

(d) γ = 0.5 (e) γ = 0.667 (f) γ = 0.833

(g) γ = 1

Figure 4.8: 20 acquisitions for 7 different γ in active learning experiments on the
half-moon dataset using semi-supervised generative model (M2). The acquired data
points that are labelled as the red class are plotted in yellow circles. The acquired
data points that are labelled as the blue class are plotted in cyan circles. The two
dark red and dark blue circles are the initial labelled data, the light red and blue
circles are the unlabelled data, the light red and blue stars are the test data.

Figure 4.9: Experiments on half-moon dataset using M2 model and acquisition
function A′

γ(x) from Eq.(4.1), where k = 4. The plot shows the test accuracy across
20 acquisitions in a single run for 7 different γ values.
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4.4 Acquisition with A1(·) then A0(·)

From previous section we found out a drawback in the acquisition function Aγ(x), which is
the difficulty in balancing the linear combination between predictive entropy and the density
pθ(x). In this section, we look at whether using the predictive entropy A0(x) and the density
A1(x) separately will help with the active learning performance. Recall from the section
3.3.3, our idea is to first use the acquisition function A1(x) to filter out non-representative
data (i.e. likely outliers), then we use the acquisition function A0(x) to choose the most
informative data within the filtered set.

We have done experiments with such acquisition method using 10 different proportions
for filtering. During each acquisition step, we first keep the top X% (such that X ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}) of the unlabelled data that have the highest values
w.r.t. A1(x), then select the one with maximum A0(x). Results are showed in Figure 4.10.
From the figure, we can see that by keeping only a small portion of the highest density
data, we are not able to improve the active learning performance. As more and more data
are kept, the performance increases. Note that when X = 100, we are keeping the entire
unlabelled set for A0(x), which is the same as the active learning setting using only AH(x)
in previous sections. Another finding is that filtering out around 20% of the lowest density
data using A1(x) does not have a negative impact for the performance. However, filtering
using density did not show improvements in our experiments either, we suspect it is because
the half-moon dataset is too simple and the impact of outliers is not significant. It is worth
to explore whether using A1(x) to filter out a small portion of the non-representative data
will improve the active learning performance in a more complex dataset.

Figure 4.10: Experiments on half-moon dataset using M2 model with 30 acquisi-
tions. The data acquired are first filtered with their density value by A1(x), then
among the top X% density data we choose a single point with highest entropy A0(x).
X ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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Chapter 5

Discussion and Conclusion

In previous chapters, we first provide the motivations for using semi-supervised genera-
tive models in active learning. Then, we go through the background knowledge for semi-
supervised generative models and introduce our algorithm that integrates the model with
active learning as well as our proposed acquisition functions. The results of various experi-
ments on our methods are documented in the last chapter. In this chapter, we will discuss
some interesting problems discovered during our experiments and summarise the project in
the end.

5.1 Problems with Density

Previously, we argued that data with density value p(x) are representative. Thus, we
incorporate the density approximation pθ(x) directly into our acquisition function Aγ(x)
Eq.(3.13). However, from our experiments, we notice that since the approximated density
pθ(x) does not depend on labelled data, it remains largely unchanged during the active
learning process. It means that if we want prioritise the acquisition of unlabelled data with
high density values, we will acquire all the data around the modes of pθ(x) first. Such policy
results in acquisitions clustering in a small region (see Figure 4.8), which is not desirable and
will negatively impact the active learning performance. To solve this problem with genera-
tive models in active learning, some proposed to weight the density pθ(x) with classification
disagreement [McCallum and Nigam, 1998] for acquisition function. We did try it in our
active learning setting by weighting our density estimate A1(x) with the predictive entropy
A0(x) (i.e. use A1(x) × A0(x) as the acquisition function), but we did not get the desired
result. Therefore, how to use the density estimate pθ(x) from semi-supervised generative
model properly in active learning is left as an open problem for future investigation.

Another challenge is related to semi-supervised generative models. When we mention the
our density model pθ(x), we seem to be assuming our tractable variation lower bound from
Eq.(2.43), i.e.:

log pθ(x) ≥ 〈−L(x, y)〉qφ(y|x) + H(qφ(y|x))

gives us a close estimate to the actual density p(x). Sadly, it is very unlikely to be the case.
The latent variable model we choose for the underlying generating process as well as the
variational family we use to approximate the posterior are almost certainly not how the real
data are generated. We can use one of our experiments as an example to illustrate this. If
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we look at the bottom right contour graph in Figure 4.6 where γ = 1, we can see that the
contour lines of the lower bound (i.e. A1(x)) have a shape of a mixture of two Gaussian
distributions. Such approximation is reasonable, but does not capture the outer tails of the
two half-moons as showed in the graph. Many researchers have observed similar modelling
problems in semi-supervised generative models [Cozman et al., 2003, Zhu, 2005]. They also
emphasise that without an accurate model, unlabelled data might even hurt the accuracy.
Hence, we need to be careful when constructing semi-supervised generative model for active
learning, and do not take the lower bound value as an exact reflection of the density during
acquisition.

5.2 Sampling Bias

During the project, we also encountered an interesting problem related to active learning,
which is known as sampling bias [Dasgupta and Hsu, 2008, Beygelzimer et al., 2009, Das-
gupta, 2011]. We discovered it when we tried to prove model correctness in section 3.1.
In the section, we prove the semi-supervised generative model (M2) is able to reach the
optimal θ∗ with its training objective when the number of training data approaches infin-
ity, but under the assumption that the training data are uniformly sampled from the real
distribution (i.e. (x, y) ∼ pθ∗(x, y)). This is usually the case in a normal machine learning
setting because we assume the training data are uniformly sampled from their distribution
if there is no evidence that they are altered. However, it is not the case in active learn-
ing. The training data used by the models in active learning are carefully selected through
acquisition function. It means that the training data might not come directly from the
distribution pθ∗(x, y), thus our proofs might not hold anymore. The consequence is that if
we have infinite budget for labelling data, the model produced by active learning algorithm
with sampling bias might not converge to an optimal θ∗. Many papers have looked into this
problem, some suggested to use importance weights to correct sampling bias [Sugiyama,
2006, Bach, 2007, Beygelzimer et al., 2009].

Although, many existing active learning algorithms forget to put sampling bias into con-
sideration, it is still a desirable property to have. The question that whether our proposed
active learning algorithms have sampling bias is left for future investigation.

5.3 Summary

In this project, we try to exploit the features from semi-supervised generative models in
the active learning setting, which is a novel idea. Our motivation is that semi-supervised
generative models are able to utilise unlabelled data and provide explainable estimations for
the density distribution (pθ(x) ≈ p(x)) and the conditional distribution (qφ(y|x) ≈ p(y|x)).
These properties can be used to improve the performance of active learning. We proposed
and tested three kinds of acquisition functions that make use of pθ(x) and qφ(y|x), which
are modelled by the semi-supervised generative model M2.

Our results show that in the half-moon and MNIST dataset, using semi-supervised generative
model with predictive entropy as the acquisition function (i.e. AH(x)) will improve the
performance of active learning. In addition, even though our proposed methods for using
density information in acquisition function (i.e. Aγ(x)) failed to meet our expectation, we
investigated the problem thoroughly and clearly identified the cause.

Overall, our work suggest and demonstrate how semi-supervised generative model can be
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5.3. SUMMARY

used in active learning to improve its performance. In particular, our novel use of predictive
entropy with semi-supervised generative model is showed to provide improvements for active
learning. Moreover, through our experiments and analysis, we document the challenges we
faced in the project, which point to valuable directions for future work.
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