Oops... There is a distribution mismatch

in the Street View House Numbers (SVHN)

dataset!

The SVHN Dataset Is Deceptive for Probabilistic Generative Models Due to a Distribution Mismatch

Tim Z. Xiao^{1,2,*} Johannes Zenn^{1,2,*} Robert Bamler¹

¹University of Tübingen

²IMPRS-IS *Equal contribution, order determined by coin flip.

Table 1: For SVHN, we find that the FID between random subsets of the training and test set is **significantly higher** than the FID between non-overlapping subsets of the training set of the same size, while the IS for $\mathcal{D}'_{\text{train}}$ and $\mathcal{D}'_{\text{test}}$ is similar within all datasets.

FID (↓), IS (↑)	SVHN	SVHN-Remix	CIFAR-10	
$FID(\mathcal{D}''_{train}, \mathcal{D}'_{train})$	3.309 ± 0.029	3.334 ± 0.018	5.196 ± 0.040	
$FID(\mathcal{D}''_{train}, \mathcal{D}'_{test})$	16.687 ± 0.325	3.326 ± 0.015	5.206 ± 0.031	
$IS(\mathcal{D}'_{train} ar{\mathcal{D}}_{train})$	8.507 ± 0.114	8.348 ± 0.568	7.700 ± 0.043	
$IS(\mathcal{D}'_test \mid ar{\mathcal{D}}_train)$	8.142 ± 0.501	8.269 ± 0.549	7.692 ± 0.023	

Defining Distribution Mismatch

- **Assumption:** $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ consist of i.i.d. samples from an underlying distribution $p_{\text{data}}(x)$.
- With a distance metric D, we expect $D(p_{\text{data}}(x), \mathcal{D}'_{\text{train}}) \approx D(p_{\text{data}}(x), \mathcal{D}'_{\text{test}})$, where $\mathcal{D}'_{\text{train}}$ and $\mathcal{D}'_{\text{test}}$ are equally sized random subsets of $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$.
- Evaluation: We use $\mathcal{D}''_{\text{train}}$ representing $p_{\text{data}}(x)$ and compute whether $D(\mathcal{D}''_{\text{train}}, \mathcal{D}'_{\text{train}}) \approx D(\mathcal{D}'_{\text{train}}, \mathcal{D}'_{\text{test}})$.
- FID $(\mathcal{D}_1, \mathcal{D}_2) = \|\boldsymbol{\mu}_1 \boldsymbol{\mu}_2\|_2^2 + \operatorname{Tr}\left(\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 2\left(\boldsymbol{\Sigma}_1 \boldsymbol{\Sigma}_2\right)^{1/2}\right)$
- $\mathsf{IS}(\mathcal{D} \mid \mathcal{D}_{\mathsf{train}}) = \mathsf{exp}\left(\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[D_{\mathsf{KL}} \left[p_{\mathsf{cls.}}(\boldsymbol{y} \mid \boldsymbol{x}) \parallel p_{\mathsf{cls.}}(\boldsymbol{y}) \right] \right] \right)$

Summary

- There is a distribution mismatch in SVHN! (I.e., training and test set do not come from the same distribution.)
- The distribution mismatch affects the evaluation of probabilistic generative models, but not classifiers.
- Lesson: When benchmarking generative models, we need to be mindful of distribution mismatch!
- We provide the **SVHN-Remix** dataset.

Figure 1: Five random splits (with reshuffling) of \mathcal{D}_{train} and \mathcal{D}_{test} into \mathcal{D}'_{train} , \mathcal{D}''_{train} , and \mathcal{D}'_{test} .

Implications on Classif. and Probabilistic Generative Models

Figure 2 : (a): classification loss evaluated on training set (dashed) and test set (solid) on SVHN and SVHN-Remix (shaded areas are $\pm \sigma$). The losses are similar. (b) and (c): BPD evaluated as a function of training progress on the training set and test set for a variational diffusion model (VDM) and variational autoencoders (VAEs). For SVHN, the

• Bits per dimension (BPD; proportional to negative ELBO; lower is better).

order of training and test set performance is flipped compared to SVHN-Remix.

• The solid blue line first goes below the dashed blue line, then goes above it \Rightarrow overfitting!

