A Compact Representation for Bayesian Neural Networks By Removing Permutation Symmetry

imprs-is

Tim Z. Xiao^{1,2} Weiyang Liu^{3,4} Robert Bamler¹

¹University of Tübingen ²IMPRS-IS ³University of Cambridge ⁴Max Planck Institute for Intelligent Systems, Tübingen

1. Background: Permutation Symmetry in Neural Networks

► For a neural network, e.g.,

$$x \mapsto \sigma_2(\omega_2 \, \sigma_1(\omega_1 \, x + b_1) + b_2)$$

we can apply permutation P s.t.

$$\omega_1' := P \omega_1, \ b_1' := P b_1, \ \omega_2' := \omega_2 P^{-1},$$

which does not change the function.

► Rebasin (Ainsworth, 2023) removes the loss barriers (bottom plot)

Figure 1: Permutation invariance for neurons in the same layer.

Figure 2: Training dynamics for models with W_0 and W_1 , and their interpolations \mathbf{W}_{λ} .

2. Quantifying Permutations in Weight Space by Number of Transpositions

► Number of Transpositions (NoTs) - Measuring the magnitude of permutation with the minimal number of pairwise swaps (i.e., transpositions). We can then meaningfully quantify weight-space distances by a pair $(||\mathbf{W}_0 - P\mathbf{W}_1||_2^2, \text{NoT}(P))$.

Figure 3: Left three: effect of permuting initial weights by different Number of Transpositions (NoT) on NoT after training, weight-space distance, and loss barrier (shaded regions: $\pm 1\sigma$ over 5 runs). Right: NoT changes monotonically along the interpolation \mathbf{W}_{λ} between two models \mathbf{W}_0 and \mathbf{W}_1 .

3. A Unifying Compact Representation for Bayesian Neural Networks

Problem:

- ▶ In BNNs, instead of arg max_W $p(\mathcal{D} \mid \mathbf{W})$, we want $p(\mathbf{W} \mid \mathcal{D}) = \frac{p(\mathbf{W})p(\mathcal{D} \mid \mathbf{W})}{p(\mathcal{D})}$.
- ▶ The predictive distribution $p(y^* | x^*, \mathcal{D}) = \int p(y^* | x^*, \mathbf{W}) p(\mathbf{W} | \mathcal{D}) d\mathbf{W}$.
- ▶ Two categories of representations for $p(\mathbf{W} \mid \mathcal{D})$:
 - 1. Parametric methods, e.g., variational inference (VI) and Laplace approximation.
 - 2. Sampling methods, e.g., Hamiltonian Monte Carlo (HMC), deep ensembles.
- ► There is no unifying representation!

Our Proposed Solution:

- ► Conjecture: the quasi-convexity conjecture from prior works (Ainsworth, 2023) suggests that the posterior is close to unimodal once we remove the permutation degrees of freedom.
- **▶** Unify the representations:
 - 1. Rebase into one basin
 - 2. Fit a simple unimodel distribution for $p(\mathbf{W} \mid \mathcal{D})$, e.g., Gaussian with the rebased sample mean and variance.

(a) $p(\mathbf{W} \mid \mathcal{D})$ has many modes \rightarrow Fitting a parametric model to the samples is difficult.

Parametric Rebased approximate Samples Samples posterior (b) Rebasin makes it easier.

Evaluations:

Table 1: Performance of different BNNs (q_d : before rebasin; q_r : after rebasin) on their agreement (Equation (1)) and total variation (TV; Equation (2)) to HMC samples, and on their test set accuracy.

•	•						
	HMC			Ensemble			VI
	Sample	$q_{ m d}({\sf W})$	$q_{\scriptscriptstyle \Gamma}({\sf W})$	Sample	$q_{ m d}({\sf W})$	$q_{ ext{r}}(\mathbf{W})$	$q(\mathbf{W})$
(†) Agreement with HMC samples	1.	0.1212	0.8249	0.9931	0.5239	0.9868	0.9885
(\downarrow) TV to HMC samples	0.	0.8641	0.6570	0.0229	0.7210	0.0495	0.0235
Test Accuracy (%) of Samples	98.43	11.11	82.34	98.66	52.25	97.72	98.11
Test Accuracy (%) of $oldsymbol{\mu}_{ m d}$ and $oldsymbol{\mu}_{ m r}$	N/A	28.06	92.25	N/A	86.40	97.97	98.04

$$\mathsf{TV}(p, p_{\mathsf{HMC}}) = \frac{1}{|\mathcal{D}_{\mathsf{test}}|} \sum_{\boldsymbol{x}^* \in \mathcal{D}_{\mathsf{test}}} \frac{1}{2} \sum_{\boldsymbol{y}^*} |p(\boldsymbol{y}^* \mid \boldsymbol{x}_i^*, \mathcal{D}) - p_{\mathsf{HMC}}(\boldsymbol{y}^* \mid \boldsymbol{x}_i^*, \mathcal{D})|. \tag{2}$$

Figure 5: Left: histograms of the standard deviation σ of weights before ($\sigma_{\rm d}$) and after ($\sigma_{\rm r}$) rebasin. Right: test accuracy vs. various levels of weight pruning (retaining only weights with lowest σ).