A Compact Representation for Bayesian Neural Networks By
Removing Permutation Symmetry
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1. Background: Permutation Symmetry in Neural Networks
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» For a neural network, e.g.,
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we can apply permutation P s.t.

wy = Pwi, b] :=Pby, wh:=w P,

which does not change the function.
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» Interpolation W, := (A — 1)W, + A\W; between two trained net-

works with weights Wy, Wy, s.t. W = {wy, wy, b1, bo}, introduces a 0.10
. 1.0
loss barrier (top plot). 0 08
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» Rebasin (Ainsworth, 2023) removes the loss barriers (bottom plot) Figure 1: Permutatlon Invariance Figure 2 Tralnlng dynamlcs for models with W, and W,
for neurons in the same layer. and their interpolations W,.

2. Quantifying Permutations in Weight Space by Number of Transpositions

» Number of Transpositions (NoTs) - Measuring the magnitude of permutation with the minimal number of pairwise swaps (i.e., transpositions). We can
then meaningfully quantify weight-space distances by a pair (||W, — PW,||3, NoT(P)).
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Figure 3: Left three: effect of permuting initial weights by different Number of Transpositions (NoT) on NoT after training, weight-space distance, and loss barrier
(shaded regions: +=10 over 5 runs). Right: NoT changes monotonically along the interpolation W), between two models W, and W;.

3. A Unifying Compact Representation for Bayesian Neural Networks

Problem: Our Proposed Solution:
» In BNNs, instead of arg maxy, p(D | W), we want p(W | D) = p(WL’Z%’W). » Conjecture: the quasi-convexity conjecture from prior works
» The predictive distribution p(y* | x*, D) = [ p(y*| x*, W) p(W | D) dW (Ainsworth, 2023) suggests that the posterior is close to unimodal

once we remove the permutation degrees of freedom.

» Unify the representations:
1. Rebase into one basin
2. Fit a simple unimodel distribution for p(W | D), e.g., Gaus-
sian with the rebased sample mean and variance.

» Two categories of representations for p(W | D):

1. Parametric methods, e.g., variational inference (V1) and Laplace approximation.
2. Sampling methods, e.g., Hamiltonian Monte Carlo (HMC), deep ensembles.

» There is no unifying representation!
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(@) p(W | D) has many modes — Fitting a parametric model to the samples is difficult. (b) Rebasin makes it easier.
Evaluations:
Table 1: Performance of different BNNs (g,: before rebasin; g,: after rebasin) on their agreement (Equation (1))
and total variation (TV; Equation (2)) to HMC samples, and on their test set accuracy. 1 ) ) ) )
HMC Ensemble VI Agree.(p, PHMC) — ‘D E :/[arg max p(y ‘ X >D) — arg max PHMC(_Y ‘ X; >D)] ;
t t * k
Sample qa(W) q(W) | Sample qq(W) g, (W) | g(W) U xeDe Y y
(1) Agreement with HMC samples | 1.  0.1212 0.8249 | 0.9931 0.5239 0.9868 | 0.9885 (1)
(}) TV to HMC samples 0. 0.8641 0.6570 | 0.0229 0.7210 0.0495 | 0.0235
Test Accuracy (%) of Samples 08.43 11.11 8234 | 98.66 5225 97.72 | 98.11 TV ‘ D | x* D ‘ 2
HMC E E X; HMC X; : (2)
Test Accuracy (%) of pq and p, N/A 2806 9225 | N/A 8640 97.97 98.04 (P, p \Dtest ply” [ %7, D) = pncly” | xi, D)
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Figure 5: Left: histograms of the standard deviation o of weights before (o) and after (o) rebasin. Right: test accuracy vs. various levels of weight pruning
(retaining only weights with lowest o).
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