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ABSTRACT

Variational Autoencoders (VAEs) were originally motivated (Kingma & Welling,
2014) as probabilistic generative models in which one performs approximate
Bayesian inference. The proposal of β-VAEs (Higgins et al., 2017) breaks this
interpretation and generalizes VAEs to application domains beyond generative
modeling (e.g., representation learning, clustering, or lossy data compression) by
introducing an objective function that allows practitioners to trade off between
the information content (“bit rate”) of the latent representation and the distor-
tion of reconstructed data (Alemi et al., 2018). In this paper, we reconsider this
rate/distortion trade-off in the context of hierarchical VAEs, i.e., VAEs with more
than one layer of latent variables. We identify a general class of inference mod-
els for which one can split the rate into contributions from each layer, which can
then be tuned independently. We derive theoretical bounds on the performance
of downstream tasks as functions of the individual layers’ rates and verify our
theoretical findings in large-scale experiments. Our results provide guidance for
practitioners on which region in rate-space to target for a given application.

1 INTRODUCTION

Variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) are a class of deep
generative models that are used, e.g., for density modeling (Takahashi et al., 2018), clustering (Jiang
et al., 2017), nonlinear dimensionality reduction of scientific measurements (Laloy et al., 2017),
data compression (Ballé et al., 2017), anomaly detection (Xu et al., 2018), and image generation
(Razavi et al., 2019). VAEs (more precisely, β-VAEs (Higgins et al., 2017)) span such a diverse
set of application domains in part because they can be tuned to a specific task without changing the
network architecture, in a way that is well understood from information theory (Alemi et al., 2018).

The original proposal of VAEs (Kingma & Welling, 2014) motivates them from the perspective of
generative probabilistic modeling and approximate Bayesian inference. However, the generalization
to β-VAEs breaks this interpretation as they are no longer trained by maximizing a lower bound on
the marginal data likelihood. These models are better described as neural networks that are trained
to learn the identity function, i.e., to make their output resemble the input as closely as possible. This
task is made nontrivial by introducing a so-called (variational) information bottleneck (Alemi et al.,
2017; Tishby & Zaslavsky, 2015) at one or more layers, which restricts the information content that
passes through these layers. The network activations at the information bottleneck are called latent
representations (or simply “latents”), and they split the network into an encoder part (from input to
latents) and a decoder part (from latents to output). This separation of the model into an encoder
and a decoder allows us to categorize the wide variety of applications of VAEs into three domains:

1. data reconstruction tasks, i.e., applications that involve both the encoder and the decoder;
these include various nonlinear inter- and extrapolations (e.g., image upscaling, denoising,
or inpainting), and VAE-based methods for lossy data compression;

2. representation learning tasks, i.e., applications that involve only the encoder; they serve
a downstream task that operates on the (typically lower dimensional) latent representation,
e.g., classification, regression, visualization, clustering, or anomaly detection; and

3. generative modeling tasks, i.e., applications that involve only the decoder are less com-
mon but include generating new samples that resemble training data.
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Figure 1: Left: trade-off between performance in the three applications domains of VAEs, using
GHVAE trained on the SVHN data set (details: Section 5); higher is better for all three metrics; gray
dots on walls show 2d-projections. Right: color code, corresponding layer-wise rates (Eq. 7), and
individual performance landscapes (size of dots ∝ performance). The hyperparameters β2 and β1

allow us to tune the HVAE for best data reconstruction (△), best representation learning (⋄), or
best generative modeling (D). Note that performance landscapes differ strongly across the three
applications, and neither a standard VAE (β2=β1=1; marked “•” in right panels) nor a conventional
β-VAE (β2=β1; dashed red lines) result in optimal models for any of the three applications.

The information bottleneck incentivizes the VAE to encode information into the latents efficiently by
removing any redundancies from the input. How agressively this is done can be controlled by tuning
the strength β of the information bottleneck (Alemi et al., 2018). Unfortunately, information theory
distinguishes relevant from redundant information only in a quantitative way that is agnostic to the
qualitative features that each piece of information represents about some data point. In practice,
many VAE-architectures (Deng et al., 2017; Yingzhen & Mandt, 2018; Ballé et al., 2018) try to
separate qualitatively different features into different parts of the latent representation by making
the model architecture reflect some prior assumptions about the semantic structure of the data. This
allows downstream applications from the three domains discussed above to more precisely target
specific qualitative aspects of the data by using or manipulating only the corresponding part of the
latent representation. However, in this approach, the degree of detail to which each qualitative aspect
is encoded in the latents can be controlled at most indirectly by tuning network layer sizes.

In this paper, we argue both theoretically and empirically that the three different application domains
of VAEs identified above require different trade-offs in the amount of information that is encoded in
each part of the latent representation. We propose a method to independently control the information
content (or “rate”) of each layer of latent representations, generalizing the rate/distortion theory of
β-VAEs (Alemi et al., 2018) for VAEs with more than one layer of latents (“hierarchical VAEs” or
HVAEs for short). We identify the most general model architecture that is compatible with our pro-
posal and analyze how both theoretical performance bounds and empirically measured performances
in each of the above three application domains depend on how rate is distributed across layers.

Our approach is summarized in Figure 1. The 3d-plot shows empirically measured performance
metrics (discussed in detail in Section 5.2) for the three application domains identified above. Each
point on the colored surface corresponds to different layer-wise rates in an HVAE with two layers
of latents. Crucially, the rates that lead to optimal performance are different for each of the three
application domains (see markers △, D, and ⋄ in Figure 1), and none of these three optimal models
coincide with a conventional β-VAE (dashed red lines in right panels). Thus, being able to control
each layer’s individual rate allows practitioners to train VAEs that target a specific application.

The paper is structured as follows. Section 2 summarizes related work. Section 3 introduces the
proposed information-trading method. We then analyze how controlling individual layers’ rates can
be used to tune HVAEs for specific tasks, i.e., how performance in each of the three application
domains identified above depends on the allocation of rates across layers. This analysis is done
theoretically in Section 4 and empirically in Section 5. Section 6 provides concluding remarks.
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(a) bottom-up (b) implicit top-down (e.g., LVAE) (c) generalized (explicit) top-down

Figure 2: Inference (dashed arrows) and generative (solid arrows) models for hierarchical VAEs
(HVAEs) with two layers of latent variables. White/gray circles denote latent/observed random
variables, respectively; the diamond d1 in (b) is the result of a deterministic transformation of x.

2 RELATED WORK

We group related work into work on model architectures for hierarchical VAEs, and on β-VAEs.

Model Design for Hierarchical VAEs. The original VAE design (Kingma & Welling, 2014;
Rezende et al., 2014) has a single layer of latent variables, but recent works (Vahdat & Kautz, 2020;
Child, 2021), found that increasing the number of stochastic layers in hierarchical VAEs (HVAEs)
improves performance. HVAEs have various designs for their inference models. Sønderby et al.
(2016) introduced Ladder VAE (LVAE) with a top-down inference path rather than the naive bottom-
up inference (see Section 3), whereas the Bidirectional-Inference VAE (BIVA) (Maaløe et al., 2019)
uses a combination of top-down and bottom-up. Our proposed framework applies to a large class of
inference models (see Section 3) that includes the popular LVAE (Sønderby et al., 2016).

β-VAEs And Their Information-Theoretical Interpretations. Higgins et al. (2017) introduced
an extra hyperparameter β in the objective of VAEs that tunes the strength of the information bottle-
neck, and they observed that large β leads to a disentangled latent representation. An information-
theoretical interpretation of β-VAEs was provided in (Alemi et al., 2018) by applying the concept
of a (variational) bottleneck (Tishby & Zaslavsky, 2015; Alemi et al., 2017) to autoencoders. Due
to this information-theoretical interetation, β-VAEs are popular models for data compression (Ballé
et al., 2017; Minnen et al., 2018; Yang et al., 2020), where tuning β allows trading off between the
bit rate of compressed data and data distortion. In the present work, we generalize β-VAEs when
applied to HVAEs, and we introduce a framework for tuning the rate of each latent layer individually.

3 A HIERARCHICAL INFORMATION TRADING FRAMEWORK

We propose a refinement of the rate/distortion theory of β-VAEs (Alemi et al., 2018) that admits
controlling individual layers’ rates in VAEs with more than one layers of latents (hierarchical VAEs).

3.1 CONVENTIONAL β-VAE WITH HIERARCHICAL LATENT REPRESENTATIONS

We consider a hierarchical VAE (HVAE) for data x with L layers of latent representations {zℓ}Lℓ=1.
Figure 2, discussed further in Section 3.2 below, illustrates various model architectures for the exam-
ple of L = 2. Solid arrows depict the generative model pθ({zℓ},x), where θ are model parameters
(neural network weights). We assume that the implementation factorizes pθ({zℓ},x) as follows,

pθ({zℓ},x) = pθ(zL) pθ(zL−1|zL) pθ(zL−2|zL−1, zL) · · · pθ(z1|z≥2) pθ(x|z≥1) (1)

where the notation z≥n for any n is short for the collection of latents {zℓ}Lℓ=n (thus, z≥1 and {zℓ}
are synonymous), and the numbering of latents from L down to 1 follows the common convention
in the literature (Sønderby et al., 2016; Gulrajani et al., 2017; Child, 2021). The loss function of a

3



Published as a conference paper at ICLR 2023

normal β-VAE (Higgins et al., 2017) with this generic architecture would be
Lβ(θ, ϕ) = Ex∼Xtrain

[
Eqϕ({zℓ}|x)

[
− log pθ(x|{zℓ})

]︸ ︷︷ ︸
= “distortion” D

+β DKL

[
qϕ({zℓ} |x)

∣∣∣∣ pθ({zℓ})]︸ ︷︷ ︸
= “rate” R

]
. (2)

Here, qϕ({zℓ} |x) is the inference (or “encoder”) model with parameteres ϕ, Xtrain is the training
set, DKL[ · || · ] denotes Kullback-Leibler divergence, and the Lagrange parameter β > 0 trades off
between a (total) rate R and a distortion D (Alemi et al., 2018). Setting β = 1 turns Eq. 2 into the
negative ELBO objective of a regular VAE (Kingma & Welling, 2014). The rate R obtains its name
as it measures the (total) information content that qϕ encodes into the latent representations {zℓ},
which would manifest itself in the expected bit rate when one optimally encodes a random draw
{zℓ} ∼ qϕ({zℓ} |x) using pθ({zℓ}) as an entropy model (Agustsson & Theis, 2020; Bennett et al.,
2002). An important observation pointed out in (Alemi et al., 2017) is that, regardless how rate R
is traded off against distortion D by tuning β, their sum R + D is—in expectation under any data
distribution pdata(x)—always lower bounded by the entropy H[pdata(x)] := Epdata(x)[− log pdata(x)],

Epdata(x)[R+D] ≥ H[pdata(x)] ∀ pdata. (3)

Limitations. The rate R in Eq. 2 is a property of the collection {zℓ} of all latents, which can limit
its interpretability for some inference models. For example, the common convention of enumerating
layers zℓ from ℓ = L down to 1 in Eq. 1 is reminiscent of a naive architecture for the inference model
that factorizes in reverse order compared to Eq. 1 (“bottom up”, see dashed arrows in Figure 2(a)),
i.e., qϕ({zℓ} |x) = qϕ(z1|x) qϕ(z2|z1) · · · qϕ(zL|zL−1). Using a HVAE with such a “bottom-up”
inference model to reconstruct some given data point x would map x to z1 using qϕ(z1|x) and then
map z1 back to the data space using pθ(x|z1), thus ignoring all latents zℓ with ℓ > 1. Yet, the
rate term in Eq. 2 still depends on all latents, including the ones not needed to reconstruct any data
(practical VAE-based compression methods using bits-back coding (Frey & Hinton, 1997) would,
however, indeed use zℓ with ℓ > 1 as auxiliary variables for computational efficiency).

3.2 TRADING INFORMATION BETWEEN LATENTS

Many HVAEs used in the literature allow us to resolve the limitations identified in Section 3.1. For
example, the popular LVAE architecture (Sønderby et al., 2016), (Figure 2(b)), uses an inference
model (dashed arrows) that traverses the latents {zℓ} in the same order as the generative model
(solid arrows). We consider the following generalization of this architecture (see Figure 2(c)),

qϕ({zℓ} |x) = qϕ(zL|x) qϕ(zL−1 | zL,x) qϕ(zL−2 | zL−1, zL,x) · · · qϕ(z1 | z≥2,x). (4)
Formally, Eq. 4 is just the product rule of probability theory and therefore holds for arbitrary in-
ference models qϕ({zℓ} |x). More practically, however, we make the assumption that the actual
implementation of qϕ({zℓ} |x) follows the structure in Eq. 4. This means that, using the trained
model, the most efficient way to map a given data point x to its reconstruction x̂ now involves all
latents zℓ (either drawing a sample or taking the mode at each step):

x
qϕ(zL|x)−−−−−−→ zL

qϕ(zL−1|zL,x)−−−−−−−−−−→ zL−1 −→ · · · −→ z2
qϕ(z1|z≥2,x)−−−−−−−−−→ z1

pθ(x|{zℓ})−−−−−−−−→ x̂. (5)

Layer-wise Rates. We can interpret Eq. 5 in that it first maps x to a “crude” representation zL,
which gets iteratively refined to z1, and finally to a reconstruction x̂. Note that each factor
qϕ(zℓ | z≥ℓ+1,x) of the inference model in Eq. 4 is conditioned not only on the previous lay-
ers z≥ℓ+1 but also on the original data x. This allows the inference model to target each refinement
step in Eq. 5 such that the reconstruction x̂ becomes close to x. More formally, we chose the infer-
ence architecture in Eq. 4 such that it factorizes over {zℓ} in the same order as the generative model
(Eq. 1). This allows us to split the total rate R into a sum of layer-wise rates as follows,

R = Eqϕ({zℓ}|x)

[
log

qϕ(zL|x)
pθ(zL)

+ log
qϕ(zL−1|zL,x)
pθ(zL−1|zL)

+ . . .+ log
qϕ(z1|z≥2,x)

pθ(z1|z≥2)

]
= R(zL) +R(zL−1|zL) +R(zL−2 | zL−1, zL) + . . . +R(z1|z≥2).

(6)

Here,
R(zL) = DKL

[
qϕ(zL|x)

∣∣∣∣ pθ(zL)] and

R(zℓ|z≥ℓ+1) = Eq(z≥ℓ+1|x)
[
DKL

[
qϕ(zℓ | z≥ℓ+1,x)

∣∣∣∣ pθ(zℓ | z≥ℓ+1)
]] (7)

quantify the information content of the highest-order latent representation zL and the (expected)
increase in information content in each refinement step zℓ+1 → zℓ in Eq. 5, respectively.
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Controlling Each Layer’s Rate. Using Eqs. 6-7, we generalize the rate/distortion trade-off from
Section 3.1 by introducing L individual Lagrange multipliers βL, βL−1, . . . , β1, collectively denoted
as boldface β. This leads to a new loss function that generalizes Eq. 2 as follows,

Lβ(θ, ϕ) = Ex∼Xtrain

[
D + βLR(zL) + βL−1R(zL−1|zL) + . . .+ β1R(z1|z≥2)

]
. (8)

Setting all βs to the same value recovers the conventional β-VAE (Eq. 2), which trades off distortion
against total information content in {zℓ}. Tuning each β-hyperparameter individually allows trading
off information content across latents. (In a very deep HVAE (i.e., large L) it may be more practical
to group layers into only few bins and to use the same β-value for all layers within a bin.) We analyze
how to tune βs for various applications theoretically in Section 4 and empirically in Section 5.

4 INFORMATION-THEORETICAL PERFORMANCE BOUNDS FOR HVAES

In this section, we analyze theoretically how various performance metrics for HVAEs are restricted
by the individual layers’ rates R(zL) and R(zℓ|z≥ℓ+1) identified in Eq. 7 for a HVAE with “top-
down” inference model. Our analysis motivates the use of the information-trading loss function in
Eq. 8 for training HVAEs, following the argument from the introduction that VAEs are commonly
used for a vast variety of tasks. As we show, different tasks require different trade-offs that can be
targeted by tuning the Lagrange multipliers β in Eq. 8. We group tasks into the application domains
of (i) data reconstruction and manipulation, (ii) representation learning, and (iii) data generation.

Data Reconstruction and Manipulation. The most obvious class of application domains of VAEs
includes tasks that combine encoder and decoder to map some data point x to representations {zℓ}
and then back to the data space. The simplest performance metric for such data reconstruction tasks
is the expected distortion Epdata(x)[D], which we can bound by combining Eq. 3 with Eqs. 6-7,

Epdata(x)[D] ≥ H[pdata(x)]− Epdata(x)

[
R(zL) +R(zL−1|zL) + · · ·+R(z1|z≥2)

]
. (9)

Eq. 9 would suggest that higher rates (i.e., lower β’s) are always better for data reconstruction tasks.
However, in many practical tasks (e.g., image upscaling, denoising, or inpainting) the goal is not
solely to reconstruct the original data but also to manipulate the latent representations {zℓ} in a
meaningful way. Here, lower rates can lead to more semantically meaningful representation spaces
(see, e.g., Section 5.6 below). Controlling how rate is distributed across layers via Eq. 8 may allow
practitioners to have a semantically meaningful high-level representation zL with low rate R(zL)
while still retaining a high total rate R, thus allowing for low distortion D without violating Eq. 9.

Representation Learning. In many practical applications, VAEs are used as nonlinear dimen-
sionality reduction methods to prepare some complicated high-dimensional data x for downstream
tasks such as classification, regression, visualization, clustering, or anomaly detection. We consider
a classifier pcls.(y|zℓ) operating on the latents zℓ at some level ℓ. We assume that the (unknown)
true data generative process pdata(y,x) = pdata(y) pdata(x|y) generates data x conditioned on some
true label y, thus defining a Markov chain y

pdata−−→ x
qϕ−→ zℓ

pcls.−−→ ŷ where ŷ := argmaxy pcls.(y|zℓ).
Classification accuracy is bounded (Meyen, 2016) by a function of the mutual information Iq(y; zℓ),

Iq(y; zℓ) ≤ Iq(x; zℓ) ≡ Epdata(x)

[
Eqϕ(zℓ|x)

[
log

qϕ(zℓ|x)
qϕ(zℓ)

]]
(10)

= Epdata(x)

[
Eqϕ(zℓ|x)

[
log

qϕ(zℓ|x)
pθ(zℓ)

]]
−DKL

[
qϕ(zℓ)

∣∣∣∣ pθ(zℓ)]
≤ Epdata(x)

[
Eqϕ(z≥ℓ|x)

[
log

qϕ(z≥ℓ|x)
pθ(z≥ℓ)

]
− Eqϕ(zℓ|x)

[
DKL

[
qϕ(z≥ℓ+1 |x, zℓ)

∣∣∣∣ pθ(z≥ℓ+1|zℓ)
]]]

≤ Epdata(x)

[
R(zL) +R(zL−1|zL) + . . .+R(zℓ | z≥ℓ+1)︸ ︷︷ ︸

=:R(z≥ℓ) (≤R)

]
.

Here, qϕ(zℓ) := Epdata(x)[qϕ(zℓ|x)] and we identify R(z≥ℓ) as the rate accumulated in all layers
from zL to zℓ. The first inequality in Eq. 10 comes from the data processing inequality (MacKay,
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2003), and the other two inequalities result from discarding the (nonnegative) KL-terms. The clas-
sification accuracy is thus bounded by (Meyen, 2016) (see also proof in Appendix B)

class. accuracy ≤ f−1
(
Iq(y; zℓ)

)
≤ f−1

(
Epdata(x)[R(z≥ℓ)]

) (
≤ f−1

(
Epdata(x)[R]

))
(11)

where f−1 is the inverse of the monotonic function f(α) = H[pdata(y)]+α logα+(1−α) log 1−α
M−1

with M being the number of classes and H[pdata(y)] ≤ logM the marginal label entropy. Eq. 11
suggests that the accuracy of an optimal classifier on zℓ would increase as the rate R(z≥ℓ) accu-
mulated from zL to zℓ grows (i.e., as β≥ℓ → 0), and that the rate added in downstream layers z<ℓ

would be irrelevant. Practical classifiers, however, have a limited expressiveness, which a very high
rate R(z≥ℓ) might exceed by encoding too many details into zℓ that are not necessary for classifi-
cation. We observe in Section 5.6 that, in such cases, increasing the rates of downstream layers z<ℓ

improves classification accuracy as it allows keeping zℓ simpler by deferring details to z<ℓ.

Data Generation. The original proposal of VAEs (Kingma & Welling, 2014) motivated them from
a generative modeling perspective using that, for β = 1, the negative of the loss function in Eq. 2 is
a lower bound on the log marginal data likelihood. This suggests setting all β-hyperparameters in
Eq. 8 to values close to 1 if a HVAE is used primarily for its generative model pθ.

In summary, our theoretical analysis suggests that optimally tuned layer-wise rates depend on
whether a HVAE is used for data reconstruction, representation learning, or data generation. The
next section tests our theoretical predictions empirically for the same three application domains.

5 EXPERIMENTS

To demonstrate the features of our hierarchical information trading framework, we run large-scale
grid searches over a two-dimensional rate space using two different implementations of HVAEs and
three different data sets. Although the proposed framework is applicable for HVAEs with L ≥ 2,
we only use HVAEs with L = 2 in our experiments for simplicity and visualization purpose.

5.1 EXPERIMENTAL SETUP

Data sets. We used the SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky, 2009) data sets
(both 32 × 32 pixel color images), and MNIST (LeCun et al., 1998) (28 × 28 binary pixel im-
ages). SVHN consists of photographed house numbers from 0 to 9, which are geometrically simpler
than the 10 classes of objects from CIFAR-10 but more complex than MNIST digits. Most results
shown in the main paper use SVHN; comprehensive results for CIFAR-10 and MNIST are shown in
Appendix A.2 and tell a similar story except where explicitly discussed.

Model Architectures. For the generative model (Eq. 1), we assume a (fixed) standard Gaussian
prior p(z2) = N (0, I), and we use diagonal Gaussian models for pθ(z1|z2) = N (gµ(z2), gσ(z2)

2)
and (for SVHN and CIFAR-10) pθ(x|z1) = N (gµ′(z1), σ

2
xI) (this is similar to, e.g., (Minnen et al.,

2018)). Here, gµ, gσ , and gµ′ , denote neural networks (see details below). Since MNIST has binary
pixel values, we model it with a Bernoulli distribution for pθ(x|z1) = Bern(gµ′(z1)). For the
inference model, we also use diagonal Gaussian models for qϕ(z2|x) = N (fµ(x), fσ(x)

2) and for
qϕ(z1|x, z2) = N (fµ′(x, z2), fσ′(x, z2)

2), where fµ, fσ , fµ′ , and fσ′ are again neural networks.

We examine both LVAE (Figure 2(b)) and our generalized top-down HVAEs (GHVAEs; see Fig-
ure 2(c)), using simple network architectures with only 2 to 3 convolutional and 1 fully connected
layers (see Appendix A.1 for details) so that we can scan a large rate-space efficiently. Note that we
are not trying to find the new state-of-the-art HVAEs. Results for LVAE are in Appendix A.2.2.

We trained 441 different HVAEs for each data set/model combination, scanning the rate-
hyperparameters (β2, β1) over a 21×21 grid ranging from 0.1 to 10 on a log scale in both directions
(see Figure 1 on page 2, right panels). Each model took about 2 hours to train on an RTX-2080Ti
GPU (∼27 hours in total for each data set/model combination using 32 GPUs in parallel).

Baselines. Our proposed framework (Eq. 8) generalizes over both VAEs and β-VAEs (Eq. 2),
which we obtain in the cases β2 = β1 = 1 and β2 = β1, respectively. These baselines are indicated
as black “ ” and red “ ” circles, respectively, in Figures 3, 5, 6, and 7, discussed below.
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Figure 3: PSNR-rate trade-off for GHVAEs trained on SVHN and CIFAR-10. Figure (a) visualizes
the same data as the left panel of (b) in 3d. Black circles “ ” mark standard VAEs (β2 = β1 = 1),
red circles “ ” mark β-VAEs (β2 = β1), and purple circles “ ” mark optimal models along constant
total rate (dashed diagonal lines) as defined in Section 5.3. Crosses point to columns in Figure 4.

Metrics. Performance metrics for the three application domains of VAEs mentioned in the intro-
duction are introduced at the beginnings of the corresponding Sections 5.4-5.6. In addition, we
evaluate the individual rates R(z2) and R(z1|z2) (Eq. 7), which we report in nats (i.e., to base e).

5.2 THERE IS NO “ONE HVAE FITS ALL”

Figure 1 on page 2 summarizes our results. The 21×21 GHVAEs trained with the grid of hyper-
parameters β2 and β1 map out a surface in a 3d-space spanned by suitable metrics for the three
application domains (metrics defined in Sections 5.4-5.6 below). The two upper right panels map
colors on this surface to βs used for training and to the resulting layer-wise rates, respectively. The
lower right panels show performance landscapes and identify the optimal models for the three appli-
cation domains of data reconstruction (△), representation learning (⋄), and generative modeling (D).

The figure shows that moving away from a conventional β-VAE (β2 = β1; dashed red lines in
Figure 1) allows us to find better models for a given application domain as the three application
domains favor vastly different regions in β-space. Thus, there is no single HVAE that is optimal for
all tasks, and a HVAE that has been optimized for one task can perform poorly on a different task.

5.3 DEFINITION OF THE OPTIMAL MODEL FOR A GIVEN TOTAL RATE

One of the questions we study in Sections 5.4-5.6 below is: “Which allocation of rates across layers
results in best model performance if we keep the total rate R fixed”. Unfortunately, it is difficult to
keep R fixed at training time since we control rates only indirectly via their Lagrange multipliers
β2 and β1. We instead use the following definition, illustrated in Figure 6 for a performance metric
introduced in Section 5.6 below. The figure plots the performance metric over R for all 21× 21 β-
settings and highlights with purple circles “ ” all points on the upper convex hull. These highlighted
models are optimal for a small interval of total rates in the following sense: if we use the total rates R
of all “ ” to partition the horizontal axis into intervals then, by definition of the convex hull, each “ ”
represents the model with highest performance in either the interval to its left or the one to its right.

5.4 PERFORMANCE ON DATA RECONSTRUCTION

Reconstruction is a popular task for VAEs, e.g., in the area of lossy compression (Ballé et al., 2017).
We measure reconstruction quality using the common peak signal-to-noise ratio (PSNR), which is
equal to Ex∼Xtest [− logD] up to rescaling and shifting. Higher PSNR means better reconstruction.

Figure 3(a) shows a 3d-plot of PSNR as a function of both R(z1|z2) and R(z2) for SVHN, thus
generalizing the rate/distortion curve of a conventional β-VAE to a rate/rate/distortion surface. Fig-
ure 3(b) introduces a more compact 2d-representation of the same data that we use for all remaining
metrics in the rest of this section and in Appendix A.2, and it also shows results for CIFAR-10.
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Figure 4: Samples (top) and reconstructions (bottom) from 3 different models (blue column labels
“1”, “2”, and “3” from left to right correspond to crosses “1”, “2”, and “3” in Figures 3(b) & 5).
Consistent with PSNR and IS metrics, model “1” produces poorest samples but best reconstructions.
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Figure 5: Sample generation performance, measured in Inception
Score (IS, see Eq. 12) and its factorization into diversity and sharp-
ness as a function of layer-wise rates for GHVAEs trained using
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Figure 4. Markers “ ”, “ ”, and “ ” same as in Figure 3.
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Figure 6: RBF-SVM clas-
sification accuracies on µ2.
Dashed line shows theoret-
ical bound (Eq. 11). Other
markers as in Figure 3.

Unsurprisingly and consistent with Eq. 9, reconstruction performance improves as total rate grows.
However, minimizing distortion without any constraints is not useful in practice as we can simply
use the original data, which has no distortion. To simulate a practical constraint in, e.g., a data-
compression application, we consider models with optimal PSNR for a given total rate R (as defined
in Section 5.3) which are marked as purple circles “ ” in Figure 3(b). We see for both SVHN and
CIFAR-10 that conventional β-VAEs (β2 = β1; red circles) perform somewhat suboptimal for a
given total rate and can be improved by trading some rate in z2 for some rate in z1. Reconstruction
examples for the three models marked with crosses in Figure 3(b) are shown in Figure 4 (bottom).
Visual reconstruction quality improves from “3” to “2” to “1”, consistent with reported PSNRs.

5.5 PERFORMANCE ON SAMPLE GENERATION

We next evaluate how tuning layer-wise rates affects the quality of samples from the generative
model. We measure sample quality by the widely used Inception Score (IS) (Salimans et al., 2016),

IS = exp
{
Epθ(x)

[
DKL[pcls.(y|x) || pcls.(y)]

]}
= eH[pcls.(y)] × e−Epθ(x)[H[pcls.(y|x)]] (12)

Here, pθ is the trained generative model (Eq. 1), pcls.(y|x) is the predictive distribution of a classifier
trained on the same training set, and pcls.(y) := Epθ(x)[pcls.(y|x)]. The second equality in Eq. 12
follows Barratt & Sharma (2018) to split IS into a product of a diversity score and a sharpness
score. Higher is better for all scores. The classifier is a ResNet-18 (He et al., 2016) for SVHN (test
accuracy 95.02%) and a DenseNet-121 (Huang et al., 2017) for CIFAR-10 (test accuracy 94.34%).

Figure 5 (left) shows IS for GHVAEs trained on SVHN. Unlike the results for PSNR, here, higher
rate does not always lead to better sample quality: for very high R(z2) and low R(z1|z2), IS even-
tually drops. The region of high IS is in the area where β2 < β1, i.e., where R(z2) is higher than
in a comparable conventional β-VAE. The center and right panels of Figure 5 show diversity and
sharpness, indicating that IS is mainly driven here by sharpness, which depends mostly on R(z2),
possibly because z2 captures higher-level concepts than z1 that may be more important to the clas-
sifier in Eq. 12. Samples from the the three models marked with crosses in Figure 5 are shown in
Figure 4 (top). Visual sample quality improves from “1” to “3” to “2”, consistent with reported IS.
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Figure 7: Mutual information (MI) Iq(y; z2) and classification accuracies of four classifiers (see
column labels) as a function of layer-wise rates R(z2) and R(z1|z2). Classifiers are conditioned on
µ2 := argmaxz2

q(z2|x) learned from GHVAEs trained with SVHN (top) and CIFAR-10 (bottom).
Markers “ ”, “ ”, and “ ” same as in Figure 3.

5.6 PERFORMANCE ON REPRESENTATION LEARNING FOR DOWNSTREAM CLASSIFICATION

VAEs are very popular for representation learning as they map complicated high dimensional data x
to typically lower dimensional representations {zℓ}. To measure the quality of learned representa-
tions, we train two sets of classifiers on a labeled test set for each trained HVAE, each consisting of:
logistic regression, a Support Vector Machine (SVM) (Boser et al., 1992) with linear kernel, an SVM
with RBF kernel, and k-nearest neighbors (kNN) with k = 5. One set of classifiers is conditioned on
the mode µ2 of qϕ(z2|x) and the other one on the mode µ1 of qϕ(z1|z2,x), where z2 ∼ qϕ(z2|x).
We use the implementations from scikit-learn (Pedregosa et al., 2011) for all classifiers.

Table 1: Optimal classification accuracies (across all
(β2, β1)-settings) using either µ2 or µ1.

Data Set log. reg. lin. SVM RBF SVM kNN

SVHN (µ2) 28.43 % 27.87 % 77.60 % 64.25 %
SVHN (µ1) 45.77 % 49.81 % 59.28 % 56.49 %

CIFAR-10 (µ2) 47.36 % 46.95 % 53.15 % 44.20 %
CIFAR-10 (µ1) 43.27 % 42.55 % 45.60 % 39.25 %

Figure 7 shows the classification accura-
cies (columns 2-5) for all classifiers trained
on µ2. The first column shows the mu-
tual information Iq(y; z2), which depends
mainly on R(z2) as expected from Eq. 10.
As long as the classifier is expressive
enough (e.g., RBF-SVM or kNN) and the
data set is simple (SVHN; top row), higher
mutual information (≈ higher R(z2)) cor-
responds to higher classification accuracies,
consistent with Eq. 11. But for less expres-
sive (e.g., linear) classifiers or more complex data (CIFAR-10; bottom row), increasing R(z1|z2)
improves classification accuracy (see purple circles “ ” in corresponding panels), consistent with the
discussion below Eq. 11. We see a similar effect (Table 1) for most classifier/data set combinations
when replacing µ2 by µ1, which has more information about x but is also higher dimensional.

6 CONCLUSIONS

We classified the various tasks that can be performed with Variational Autoencoders (VAEs) into
three application domains and argued that each domain has different trade-offs, such that a good
VAE for one domain is not necessarily good for another. This observation motivated us to propose a
refinement of the rate/distortion theory of VAEs that allows trading off rates across individual layers
of latents in hierarchical VAEs. We showed both theoretically and empirically that the proposal
indeed provides practitioners better control for tuning VAEs for the three application domains. In
the future, it would be interesting to explore adaptive schedules for the Lagrange parameters β that
would make it possible to target a specific given rate for each layer in a single training run, for
example by using the method proposed by Rezende & Viola (2018).
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A EXPERIMENT SUPPLEMENTARIES

A.1 IMPLEMENTATION DETAILS

Table 2: Model architecture details for generalized top-down HVAEs (GHVAEs) used in Section 5.
Conv and ConvTransp denote the convolutional and transposed convolutional layer, which has the
corresponding input: input channel, output channel, kernel size, stride, padding. FC represents fully
connected layer.

Data set q(z2|x) q(z1|z2,x) p(z1|z2) p(x|z1)

SVHN/
CIFAR-10

Share:
Conv(3, 32, 4, 2, 1),
Conv(32, 32, 4, 2, 1),
Conv(32, 32, 4, 2, 1)

For mean:
FC(In=512, Out=32)
For variance:
FC(In=512, Out=32)

For x:
Conv(3, 32, 4, 2, 1),
Conv(32, 32, 4, 2, 1)

For z2:
FC(In=32, Out=512)

Share:
ConvTransp(64, 32, 4, 2, 1)

For mean:
Conv(32, 32, 3, 1, 1)
For variance:
Conv(32, 32, 3, 1, 1)

Share:
FC(In=32, Out=256)

For mean:
FC(In=256, Out=512)
For variance:
FC(In=256, Out=512)

ConvTransp(32, 32, 4, 2, 1),
ConvTransp(32, 32, 4, 2, 1),
ConvTransp(32, 3, 4, 2, 1)

z1 dims: 512 z2 dims: 32 σx = 0.71 Total params: 475811

MNIST
(Binary)

Share:
Conv(1, 16, 4, 2, 1),
Conv(16, 16, 4, 2, 1),
Conv(16, 16, 4, 1, 0)

For mean:
FC(In=256, Out=20)
For variance:
FC(In=256, Out=20)

For x:
Conv(1, 16, 4, 2, 1),
Conv(16, 16, 4, 1, 0)

For z2:
FC(In=20, Out=256)

Share:
ConvTransp(32, 16, 4, 1, 0)

For mean:
Conv(16, 16, 3, 1, 1)
For variance:
Conv(16, 16, 3, 1, 1)

Share:
FC(In=20, Out=128)

For mean:
FC(In=128, Out=256)
For variance:
FC(In=128, Out=256)

ConvTransp(16, 16, 4, 1, 0),
ConvTransp(16, 16, 4, 2, 1),
ConvTransp(16, 1, 4, 2, 1)

z1 dims: 256 z2 dims: 20 σx: N/A Total params: 122713

Table 3: Model architecture details for LVAEs used in Section 5. Conv and ConvTransp denote the
convolutional and transposed convolutional layer, which has the corresponding input: input channel,
output channel, kernel size, stride, padding. FC represents fully connected layer.

Data set q(z2|x) q(z1|z2,x) p(z1|z2) p(x|z1)

SVHN/
CIFAR-10

Share:
Conv(3, 32, 4, 2, 1),
Conv(32, 32, 4, 2, 1),
Conv(32, 32, 4, 2, 1)

For mean:
FC(In=512, Out=32)
For variance:
FC(In=512, Out=32)

Involve d:
Conv(32, 32, 4, 2, 1)

For mean:
Conv(32, 32, 3, 1, 1)
For variance:
Conv(32, 32, 3, 1, 1)

Share:
FC(In=32, Out=256)

For mean:
FC(In=256, Out=512)
For variance:
FC(In=256, Out=512)

ConvTransp(32, 32, 4, 2, 1),
ConvTransp(32, 32, 4, 2, 1),
ConvTransp(32, 3, 4, 2, 1)

z1 dims: 512 z2 dims: 32 σx = 0.71 Total params: 408131
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A.2 ADDITIONAL RESULTS

Here we attached the results for MNIST, as well as the full results for LVAE on SVHN and general-
ized top-down HVAEs on CIFAR-10.

A.2.1 RESULTS FOR GENERALIZED TOP-DOWN HVAES ON MNIST

We also evaluate our proposed framework using generalized top-down HVAEs trained on binary
MNIST data (i.e., black and white images rather than grayscale).

We note that the inception score (IS) behaves different in our MNIST models compared to SVHN
(see Figure 5) in that optimal IS in MNIST occurs for high R(z1|z2) rather than high R(z2). This
indicates that semantically low-level properties (hand-writing style) of MNIST might have more
variation than high level properties (the digit), whereas SVHN images show variation in additional
high-level properties such as the background color.
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Figure 8: Trade-offs between rates and all metrics we used in Section 5 from the generalized top-
down HVAEs trained with MNIST. The results from the standard VAE (i.e. β2 = β1 = 1) and
the β-VAE (i.e. β2 = β1) are marked with “ ” and “ ”. The markers “ ” highlight the optimal
models selected using convex hull (see Figure 6 for details). The diagonal grid lines are references
for equivalent total rates, i.e. points on the same line have the same total rates.
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A.2.2 RESULTS FOR LVAE ON SVHN
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Figure 9: Trade-offs between rates and all metrics we used in Section 5 from LVAE trained with
SVHN. The results from the standard VAE (i.e. β2 = β1 = 1) and the β-VAE (i.e. β2 = β1) are
marked with “ ” and “ ”. The markers “ ” highlight the optimal models selected using convex hull
(see Figure 6 for details). The diagonal grid lines are references for equivalent total rates, i.e. points
on the same line have the same total rates.
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A.2.3 RESULTS FOR GENERALIZED TOP-DOWN HVAES ON CIFAR-10
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Figure 10: Trade-offs between rates and all metrics we used in Section 5 from the generalized top-
down HVAEs trained with CIFAR-10. The results from the standard VAE (i.e. β2 = β1 = 1) and
the β-VAE (i.e. β2 = β1) are marked with “ ” and “ ”. The markers “ ” highlight the optimal
models selected using convex hull (see Figure 6 for details). The diagonal grid lines are references
for equivalent total rates, i.e. points on the same line have the same total rates.
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B PROOF OF THE BOUND ON CLASSIFICATION ACCURACY

This section provides a proof of Eq. 11 by reformulating the proof of Proposition 5 in the thesis
by Meyen (2016) into the notation used in the present paper. We stress that this section contains
no original contribution and is provided only as a convenience to the reader, motivated by reviewer
feedback. All credits for this section belong to Meyen (2016).

We consider an (unknown) true data generative distribution pdata(y,x) for data x with (unobserved)
true labels y, and a hierarchical VAE with an inference model qϕ({zℓ} |x) of the form of Eq. 4.
Focusing on a single layer ℓ of latents, we denote the joint probability over y, x, and zℓ as

q(y,x, zℓ) := pdata(y,x) qϕ(zℓ|x) (13)
where the marginal qϕ(zℓ|x) of qϕ({zℓ} |x) is defined as usual. We further consider a classifier
pcls.(y|zℓ) that operates on zℓ. Denoting its top prediction as ŷ := argmaxy pcls.(y|zℓ), the classifi-
cation accuracy is α := Eq[δy,ŷ], where δ is the Kronecker delta.
Theorem 1. The mutual information Iq(y; zℓ) between the latent representation zℓ and the true
label y under the distribution q defined in Eq. 13 is lower bounded as follows,

Iq(y; zℓ) ≥ f(α) with f(α) = Hpdata [y]−H2(α)− (1− α) log(M − 1) (14)
where H2(α) = −α logα − (1− α) log(1− α) is the entropy of a Bernoulli distribution,
Hpdata [y] ≤ logM is the marginal entropy of the true labels, and M denotes the number of classes.

Before we prove Theorem 1, we note that the function f is strictly monotonically increasing on the
relevant interval [maxy pdata(y), 1]. Thus, f is invertible and we obtain the following corollary:
Corollary 1. The classification accuracy α is upper bounded as in Eq. 11 of the main text, i.e.,

α ≤ f−1(Iq(y; zℓ)) ≤ f−1
(
Epdata(x)[R(z≥ℓ)]

)
. (15)

The second inequality in Eq. 15 results from the bound Iq(y; zℓ) ≤ Epdata(x)[R(z≥ℓ)] derived in
Eq. 10, using the fact that f−1 is monotonically increasing (since f is).

Proof of Theorem 1. We split the mutual information into two contributions,
Iq(y; zℓ) = Hpdata [y]−Hq[y|zℓ] = Hpdata [y]− Ezℓ∼q(zℓ)

[
Ey∼q(y|zℓ)[− log q(y|zℓ)]

]
(16)

where, as clarified in the second equality, Hq[y|zℓ] is the expectation over zℓ of the conditional
entropy of y given zℓ, and q(zℓ) and q(y|zℓ) are marginals and conditionals of q (Eq. 13) as usual.

Since Hpdata [y] is fixed by the problem at hand, finding a lower bound on Iq(y; zℓ) for a given clas-
sification accuracy α is equivalent to finding an upper bound on the second term on the right-hand
side of Eq. 16, Hq[y|zℓ] = Ezℓ∼q(zℓ)[Ey∼q(y|zℓ)[− log q(y|zℓ)]], with the constraint Eq[δy,ŷ] = α.
We do this by upper bounding the conditional entropy Ey∼q(y|zℓ)[− log q(y|zℓ)] of y given zℓ for
all zℓ independently, and then taking the expectation over zℓ ∼ q(zℓ).

For a fixed latent representation zℓ, we first split off the contribution to Ey∼q(y|zℓ)[− log q(y|zℓ)]
from y = ŷ, where ŷ = argmaxy pcls.(y|zℓ) is the label that our classifier would predict for zℓ,

Ey∼q(y|zℓ)[− log q(y|zℓ)] = −q(y= ŷ|zℓ) log q(y= ŷ|zℓ)−
∑
y ̸=ŷ

q(y|zℓ) log q(y|zℓ). (17)

Here, the second term on the right-hand side resembles the entropy of a distribution over the re-
maining (M − 1) labels (y ̸= ŷ), except that the probabilities sum to (1− q(y= ŷ|zℓ)) rather than
one. Thus, regardless of the value of q(y= ŷ|zℓ), this term is maximized if q(y|zℓ) distributes the
remaining probability mass (1− q(y= ŷ|zℓ)) uniformly over the remaining (M − 1) labels, i.e.,

Ey∼q(y|zℓ)[− log q(y|zℓ)] ≤ −q(y= ŷ|zℓ) log q(y= ŷ|zℓ)− (1− q(y= ŷ|zℓ)) log
1− q(y= ŷ|zℓ)

M − 1

= H2(q(y= ŷ|zℓ)) + (1− q(y= ŷ|zℓ)) log(M − 1). (18)
Plugging Eq. 18 back into Eq. 16, we obtain the bound
Iq(y; zℓ) ≥ Hpdata [y]− Ezℓ∼q(zℓ)

[
H2(q(y= ŷ|zℓ))

]
− Ezℓ∼q(zℓ)

[
1− q(y= ŷ|zℓ)

]
log(M − 1).

(19)
We arrive at the proposition (Eq. 14) by pulling the concave function H2 out of the expectation using
Jensen’s inequality, and by then identifying Ezℓ∼q(zℓ)[q(y= ŷ|zℓ)] = q(y= ŷ) = α.
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