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Abstract

We consider the problem of iterative machine
teaching, where a teacher sequentially provides
examples based on the status of a learner under
a discrete input space (i.e., a pool of finite sam-
ples), which greatly limits the teacher’s capability.
To address this issue, we study iterative teaching
under a continuous input space where the input
example (i.e., image) can be either generated by
solving an optimization problem or drawn directly
from a continuous distribution. Specifically, we
propose data hallucination teaching (DHT) where
the teacher can generate input data intelligently
based on labels, the learner’s status and the tar-
get concept. We study a number of challenging
teaching setups (e.g., linear/neural learners in om-
niscient and black-box settings). Extensive empir-
ical results verify the effectiveness of DHT. The
code is made publicly available on Github.

1 Introduction

Machine teaching [1, 2] seeks a training dataset of minimal
size such that a learner can learn a target concept based on
this minimal dataset. Compared to machine learning where
a learner is provided with a dataset to find the optimal param-
eters, machine teaching studies the inverse problem where
the goal is to find a minimal dataset with which the learner
can converge to the given target parameters. A deeper un-
derstanding towards machine teaching is essential in many
applications, such as crowd sourcing [3, 4, 5, 6], optimal
education [1], model robustness [7, 8, 9, 10], curriculum
learning [11] and dataset distillation [12].

Depending on the type of learner, machine teaching can be
carried out batch-wise (i.e., the teacher provides the dataset
to the learner in one shot) or iteratively (i.e., the teacher
provides data to the learner iteratively and adaptively). Mo-
tivated by the dominance of iterative learners (e.g., almost
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Figure 1: Comparison of vanilla iterative machine teaching and
the proposed data hallucination teaching.

all types of neural networks), we study the problem of itera-
tive machine teaching (IMT) [13] where the teacher feeds
data intelligently based on the learner’s status in every iter-
ation such that the learner can converge to the target con-
cept within minimal iterations. The minimal number of
such iterations is defined as iterative teaching dimension.
Vanilla IMT [13] iteratively selects examples from a fixed
pool (i.e., dataset), which, however, is inherently a difficult
combinatorial problem computationally prohibitive to solve.
[14] addresses this problem by finding a continuous teach-
ing signal – the label space. Despite its simplicity, label
synthesis teaching still imposes a strong constraint on the
teaching space, limiting its capability of faster convergence.
To avoid the combinatorial problem of example selection
while enjoying the flexibility of a continuous teaching space,
we propose data hallucination teaching (DHT), where the
teacher generates from a continuous space the input data by
conditioning on the learner’s status. An intuitive comparison
between IMT and DHT is given in Figure 1.

Another motivation behind DHT comes from the promising
results of approximating a dataset with synthetic prototypes,
such as dataset distillation [12, 15] and dataset condensa-
tion [16]. DHT shares the same spirit as dataset approxi-
mation in the sense that both aim to guide the learner to

https://github.com/Zeju1997/data_halucination_teaching
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some target concept with synthetic samples. Different from
dataset approximation, DHT takes one step further by taking
the specific iterative optimization algorithm into account
and seeks to generate a sequence of examples (with ordering
information) rather than a synthetic dataset.

DHT can also be viewed as a natural generalization of IMT,
extending the original discrete teaching space to a continu-
ous one. Such a generalization introduces more modeling
flexibility but meanwhile makes the teaching process more
challenging. To tackle this challenge, we study both greedy
teaching policy and parameterized teaching policy. Par-
ticularly for the parameterized one, we propose multiple
teacher formulations (e.g., generative models) and multiple
teacher’s action spaces (e.g., Mixup sample space [17]). We
emphasize that DHT is quite different from standard gener-
ative models which usually capture static data distributions.
In contrast, DHT models a dynamically changing data dis-
tribution, which depends on the learner’s status and is used
for fast convergence rather than reconstruction.

The intuition behind the benefits of the continuous teach-
ing space in DHT comes from the empirical success of
Mixup [17, 18] and data augmentation [19, 20, 21, 22].
Mixup uses a linear interpolation between two samples for
training neural networks. Data augmentation perturbs the
inputs, e.g., images, in a small neighborhood around the
original input. Both methods can be viewed as a continuous
perturbation in the high-dimensional input space and special
cases of DHT. Even if it is only a small subset of the contin-
uous input space being considered, the empirical generaliza-
tion performance can be significantly improved. Therefore,
the original discrete input space can be sub-optimal for
teaching, for which we propose to explore the continuous
input space in order to improve the learner’s convergence.

Specifically, we study DHT under both the omniscient sce-
nario, where the teacher knows everything (particularly the
optimal learner parameters) about the learner, and the black-
box scenario, where the teacher has no prior knowledge of
the optimal learner parameters. We theoretically prove that
DHT can achieve exponential teachability (ET) [13], and
empirically show that DHT achieves much faster conver-
gence than a random teacher (i.e., SGD) and IMT [13].

Most significantly, we formulate the problem of teaching
black-box neural learners as performative teaching, which is
a novel application of performativity [23] to iterative teach-
ing. Specifically, performative teaching assumes that the
teaching target will shift based on the teacher’s action. This
is exactly the scenario when we perform iterative teaching in
the representation space of neural networks. We show that
under this formulation, DHT is able to teach deep neural
learners in a fully black-box manner on realistic datasets
such as CIFAR-10 and CIFAR-100. We believe that it is
the very first time that iterative teaching can be used to
teach black-box nonlinear learners in realistic settings while
achieving significant empirical performance gain.

Our contribution can be briefly summarized as follows:
• We propose a novel teaching framework – data halluci-

nation teaching, where the teacher iteratively generates
synthetic training data depending on the learner’s status.
DHT yields a highly flexible teaching space.

• In the DHT framework, we comprehensively study the
greedy and parameterized policies under both the omni-
scient and black-box scenarios.

• We propose a novel performative formulation for iterative
teaching, which assumes a dynamically changing teaching
target. The formulation is shown to be a natural fit for
teaching black-box neural learners.

• For the first time, we are able to apply iterative teaching to
black-box neural learners on realistic datasets. Significant
performance gain is observed empirically.

• We demonstrate faster convergence of DHT versus SGD
and other baselines, both theoretically and empirically.

2 Related Work

Machine teaching. The study of machine teaching begins
with the batch setting [24, 1, 25, 26], where the teacher
simply prepares a dataset of minimal size to the learner
towards some target concept. Efforts have been made on
the teaching behavior of different types of learner, such
as version space learners [27, 28], linear learners [25],
kernel learners [29], reinforcement learner [30], active
learners [31, 32], teacher-aware learners [33] and forgetful
learners [34, 35]. Iterative (or sequential) machine teach-
ing [13, 35, 36, 26, 37, 14] studies iterative learners by con-
sidering the specific optimization algorithm that the learner
uses. The teaching performance is measured by the learner’s
convergence. Machine teaching has diverse applications in
reinforcement learning [38, 39, 9, 40], human-in-the-loop
learning [41, 42, 43], crowd sourcing [3, 5, 6] and cyber
security [44, 7, 45, 46, 47]. Sharing similar spirits, coopera-
tive communication [48, 49, 50] also studies the interaction
between a teacher and a learner as well as how information
can be transmitted efficiently.

Data augmentation. In deep learning, data augmentation
is ubiquitous [19, 51, 52, 22] and plays a crucial role in
regularizing neural networks and improving generalization.
Without it, the training set can be easily fitted and training
loss will be minimized to zero even with random labels [53].
Data augmentation is the de facto choice in image recogni-
tion [19, 54, 55] and also one of the key ingredients to the
success of contrastive learning [22, 56].

Dataset approximation. How to approximate a dataset
with a few representative prototypes that can be used for
training remains an open problem and is actively studied
in coreset [57, 58, 59, 60], dataset pruning [61, 62], dataset
distillation [12, 15] and dataset condensation [16]. However,
dataset approximation typically considers one batch of data,
while DHT constructs a sequence of data samples.
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3 Data Hallucination Teaching
3.1 Problem Settings

Teaching protocol. We generally follow the teaching proto-
col in [13, 14]. This section mostly considers the omniscient
scenario. That is, both the teacher and the learner observe
the same sample A and share the same feature space, which
represents A as x with the label y. The teacher knows all
the information about the learner, including the model pa-
rameters wi at the i-th iteration, the learning rate ηi, the
loss function ℓ and the optimization algorithm (usually we
consider SGD). The teacher can only feed examples (xi,yi)
to the learner at the i-th iteration.

Teacher’s objective. In the omniscient scenario, the teacher
aims to provide examples to the learner in every iteration
such that the learner parameters w converge to the desired
parameters w∗ as quickly as possible. We typically use
w∗ = argminw E(x,y){ℓ(x,y|w)}. The teacher seeks to
optimize the following objective for gradient decent learner:

min
{(x1,y1),··· ,(xT ,yT )}

T

s.t.

{
d(wT ,w∗) ≤ ϵ

wt+1 = wt − ηt
∂ℓ(xt+1,yt+1|wt)

∂wt

(1)

where d(·, ·) denotes some discrepancy measure (e.g., Eu-
clidean distance or cosine similarity). The above optimiza-
tion is in general intractable and ϵ is hard to set in practice,
so we usually resort to a simpler teacher’s objective:

min
{(x1,y1),··· ,(xT ,yT )}

d(wT ,w∗) (2)

where T is the prescribed termination iteration. This mini-
mization aims to find a teaching trajectory of length T such
that the distance between wT and w∗ reaches the minimum.

Learner’s objective. The learner minimizes its loss func-
tion ℓ with examples given by the teacher. If the teacher
feeds one example at a time, gradient descent learners use

wt+1 = wt − ηt
∂ℓ(xt+1,yt+1|wt)

∂wt
(3)

where ℓ can be any regression or classification loss.

3.2 Greedy Teaching Policy

We start with the simplest greedy teaching policy which
uses Euclidean distance as d and approximates Equation 2
with T -times one-step minimization. DHT aims to generate
the teaching example (x,y). To simplify the problem, we
uniformly sample a label y and synthesize the corresponding
data x for teaching. This leads to the one-step optimization:

min
xt+1∈X ,yt+1∼U

η2
t

∥∥∥∥∂ℓ(xt+1,yt+1|wt)

∂wt

∥∥∥∥2

2

− 2ηt⟨wt −w∗,
∂ℓ(xt+1,yt+1|wt)

∂wt
⟩

(4)

where xt+1 is optimized withinX (e.g., pixel space [0, 255])
and y is sampled uniformly from the discrete label space.

Equation 4 can be directly used to teach any linear learner
such as least square regression and logistic regression. De-
spite its simplicity, the greedy policy is computationally
expensive if x is high-dimensional (e.g., images).

3.3 Parameterized Teaching Policy

The greedy policy considers only a one-step update for the
learner, hence is inevitably sub-optimal. However, consid-
ering all the possible combinations of x in multiple steps
is computationally infeasible, especially when the teaching
space X is continuous. To address this, here we study a
parameterized teaching policy. The central idea is to param-
eterize the teacher by a neural network θ, and the teaching
policy is denoted as πθ. With a parameterized policy, we
can easily consider multiple-step updates for the learner. For
example, when taking v-step updates for the learner into
account, the teacher optimizes minπθ

∥wt+v −w∗∥2.

3.3.1 Data Transformation
To simplify the problem, we start with a data transforma-
tion policy (at the t-th iteration) x̃ = πθ(x,y,w

t,w∗) that
transforms a randomly sampled data point (x,y) to a teach-
ing example (x̃,y). To learn θ, we have that

min
θ
∥wv(θ)−w∗∥22 + α

v∑
i=1

ℓ(πθ(x
i,yi,wi

SG,w
∗),yi|wi

SG)

s.t. wv(θ) = argmin
w

E(x,y)

{
ℓ
(
πθ(x,y,w,w∗),y|w

)}
where α is a hyperparameter and the learner is initialized
at w0. The policy πθ keeps transforming the randomly
sampled data based on both the current learner parameters
and the target parameters in order to improve the learner’s
convergence to w∗. To solve this bi-level optimization, we
can simply unroll the inner optimization with v steps of
stochastic gradient descent, which enables the gradient to
flow back to θ when solving the outer minimization [14, 63].
This shares the same spirit as meta-learning [64] and back-
propagation through time in recurrent networks [65]. We
note that the greedy policy is the special case of v = 1.
In order to amplify the learning signal, we introduce an
auxiliary intermediate loss minimization into the teacher’s
objective. With this auxiliary term, the teacher will favor the
teaching trajectory that not only quickly guides the learner
to w∗ but also well minimizes the learner’s loss function. In
the implementation, we simplify the gradient in the auxiliary
term by replacing wi with wi

SG = StopGradient(wi).

3.3.2 Generative Modeling
The data transformation policy builds a learner-conditioned
deterministic mapping from existing data to teaching ex-
amples, and it does not model the underlying distribution
of teaching examples. Moreover, the data transformation
policy is likely to generate unrealistic samples that do not
match the underlying data distribution p(x). To this end,
we study the generative teaching policy. The central idea
is to parameterize the teaching policy with a generative
model and impose a distribution divergence constraint, i.e.,
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Div(p(π), p(x)) ≤ ϵ, which is used to force teaching exam-
ples to be similar to the empirical data distribution.

GAN-based teacher. One of the simplest ways to perform
generative modeling is to use generative adversarial net-
works (GANs) [66]. Therefore, we parameterize the teacher
as a generator and introduce an additional discriminator
D(·) to close the gap between synthetic teaching examples
and real data. Specifically, the teacher model optimizes

min
θ

max
D

Ex̃∼pπ(z) log
(
1−D(πθ(z))

)
+ Ex∼p(x) log

(
D(x)

)
+∥wv(θ)−w∗∥22 + α

v∑
i=1

ℓ
(
πθ(z,x

i,yi,wi
SG,w

∗),yi|wi
SG
)

s.t. wv(θ) = argmin
w

E(x,y)

{
ℓ
(
πθ(z,x,y,w,w∗),y|w

)}
where z is a noise vector following a normal distribution
and we sometimes omit the input arguments (x,y,w,w∗)
for πθ for notational simplicity. Similar to learning the data
transformation policy, we unroll v steps of SGD for the
inner optimization and put wv(θ) into the outer min-max
optimization for end-to-end training. This outer min-max
problem can be solved following standard GAN training.

VAE-based teacher. We take advantage of a pretrained vari-
ational autoencoder (VAE) [67] to realize the distribution
divergence constraint. Specifically, we first pretrain a VAE
on the full dataset to capture the joint distribution p(x,y),
and then let the teaching policy to generate data in the latent
space of the VAE. The objective for the teacher model is

min
θ
∥wv−w∗∥22 + α

v∑
i=1

ℓ
(
pψ(πθ),y|wi

SG
)
+ KL

(
πθ||p(u)

)
s.t. wv(θ) = argmin

w
E(x,y)

{
ℓ
(
pψ(πθ),y|w

)}
where the fixed Gaussian prior for VAE’s latent u is p(u)
and the decoder is pψ(πθ) = pψ(x̃|πθ(u,x,y,w,w∗),y).
KL(·||·) is the Kullback–Leibler divergence. VAE essen-
tially serves as a bridge between the latent space and the
input data space, and the teacher generates the latent code
which is then mapped to raw data by the decoder. Compared
to GAN-based teacher, VAE-based teacher enjoys stronger
training stability and also avoids the problem of mode col-
lapse. Since the GAN-based teacher is jointly trained with
the learner, it may produce examples that achieve better
teaching performance but yield weaker semantic meaning.

3.4 Theoretical Insights and Discussions

Similar to sample selection [13, 35] and label synthe-
sis [14], we now show that the greedy DHT can prov-
ably achieve ET. We consider two types of linear learn-
ers here: ℓLSR(x, y|w) = 1

2 (⟨w,x⟩ − y)2 for the least
square regression (LSR) learner and ℓLR(x, y|w) = log(1+
exp{−y⟨w,x⟩}) for the logistic regression (LR) learner.
For simplicity, we consider the case where the label is a
scalar. For LSR, the gradient w.r.t. w of a single sample
(x, y) is ∇wℓ = (⟨w,x⟩ − y)x. For LR learners, the gra-
dient is∇wℓ = −yx

1+exp(y⟨w,x⟩) . Then we define g(x̃) as the

teaching gradient ratio that is used to quantify the scale dif-
ference between the gradient of a normal sample and that of
a teaching example. Tx→x̃ is defined as the transformation
operator that maps x to x̃, i.e., x̃ = Tx→x̃ ◦ x. We have

∇wℓ(x̃, y|w) = g(x̃) · Tx→x̃ ◦ ∇wℓ(x, y|w). (5)

For LSR, we have that g(x̃) = ⟨w,x⟩−y
⟨w,x̃⟩−y . For LR, we have

that g(x̃) = 1+exp(y⟨w,x̃⟩)
1+exp(y⟨w,x⟩) . We note that g(x̃) is important

for the convergence of the learner and also largely deter-
mines the teacher’s ability to achieve ET. Following prior
work [13, 35], ET is defined as the ability for the teacher to
guide the learner to converge to w∗ at an exponential rate.

Theorem 1 (Exponential teachability of DHT). Assume
that the learner loss ℓi has the property of interpolation,
Li-Lipschitz, and convexity. f is order-1 µ strongly convex.
Then DHT can achieve ET if Tx→x̃ is an scaling mapping,
i.e., Tx→x̃ ◦ x = βx and β is adjusted such that g(x̃) =
c1∥wt −w∗∥. Specifically, we have that

E{∥wT−w∗∥2} ≤ (1−c1ηtµ̄+c21η
2
tLmax)

T
∥∥w0 −w∗∥∥2

(6)

in which Lmax = maxi Li and µ̄ =
∑

i µi/n. It implies
that O((log 1

c0
)−1 log( 1ϵ )) samples are needed to achieve

E{∥wT −w∗∥2} ≤ ϵ. We let c0 = 1− c1ηtµ̄+ c21η
2
tLmax

and c1 is adjusted such that 0 < c1ηt < µ̄/Lmax holds.

Theorem 1 validates the importance of g(x̃) in achieving ET.
When Tx→x̃ is a scaling mapping, DHT recovers the case of
label synthesis [14]. Thus, DHT can always achieve a better
convergence rate than label synthesis. Further, DHT en-
joys all the theoretical guarantees for label synthesis. When
Tx→x̃ is a nonlinear mapping, DHT will become very flexi-
ble and potentially a better convergence rate can be derived.

4 Black-box DHT for Neural Learners
In this section, we discuss how DHT can be used to teach
neural learners in a black-box setting. Black-box teach-
ing for neural teachers has long been an open challenge in
iterative machine teaching. We start by studying how param-
eterized DHT can be extended to the black-box setting and
then introduce a novel alternative – performative teaching
which can naturally be used to teach neural learners.

Black-box teaching is generally difficult due to two aspects.
First, the optimal learner parameters w∗ are no longer given
and how to find a good surrogate to measure the distance to
w∗ is crucial (essentially when the learner is nonlinear and
non-convex). In general, the goal of black-box teaching is to
improve the learner’s generalizability instead of its conver-
gence to some w∗. Therefore, we usually seek to find a sur-
rogate for w∗ = argminw E(x,y)∼Preal{ℓ(x,y|w)} where
Preal denotes the underlying joint data and label distribution.
Second, the teaching space of DHT is huge and how to
properly reduce the teaching space to a reasonably small yet
sufficiently effective one is important. Black-box teaching
shares a similar ultimate goal to knowledge distillation [68].
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4.1 Mixup-based Teaching

We propose a black-box DHT based on the data augmenta-
tion space in Mixup [17]. The basic idea is to learn a teacher
that produces the learner-conditioned Mixup coefficients.

Surrogate target. We use a simple surrogate to measure
the distance to w∗: the validation accuracy on a held-out
validation data set that is not used for training the learner.
Recent studies in neural architecture search [69, 70, 71],
meta-learning [72] and automated machine learning [73]
validate the effectiveness of such a surrogate to approximate
the distance to a generalizable w∗.

Teaching space. We restrict the teacher’s action space to the
data augmentation space in Mixup. Specifically, the teach-
ing policy outputs the interpolation between two randomly
selected samples (x1,y1) and (x2,y2):

πθ
(
(x1,y1), (x2,y2),w

t) = λθx1 + (1− λθ)x2 (7)

where λθ = hθ((x1,y1), (x2,y2),w
t). hθ(·) is a neural

network parameterized by θ and outputs the Mixup coeffi-
cient λ for mixing x1 and x2. The teaching example is x̃ =
λθx1+(1−λθ)x2, and its label is ỹ = λθy1+(1−λθ)y2.
Specifically, we can learn a teacher network h(·) that either
outputs a continuous value within [0, 1] or outputs a discrete
value (e.g., {0, 0.25, 0.5, 0.75, 1}). For the latter case, the
teacher is a classifier for the discrete Mixup coefficients.

Unrolling. We first formulate the learning of the teacher as
a bi-level optimization similar to the one in Section 3.3.1.
The outer optimization is to minimize the empirical risk
on the validation set Da and the inner optimization is to
minimize the empirical risk on the training set Dr. We have

min
θ

E(xa,ya)∼Da

{
ℓ
(
xa,ya|wv(θ)

)}
s.t. wv(θ) = argmin

w
E(xr,yr)∼Dr

{
ℓ
(
πθ(xr,yr,w), ỹr|w

)}
which can be solved by unrolling a few gradient descent
steps of the inner minimization to the outer minimization,
similar to works [64, 71]. πθ consists of a network hθ(·)
that outputs the Mixup coefficient. Here the empirical risk
on the validation set serves as a proxy to the distance to w∗.

Policy gradient. Alternatively, we can also resort to the
policy gradient approach [74]. We can use the accuracy
on the validation set as the reward signal R. Thus simply
maximizing this terminal reward: minθ J(θ) := Eπθ

{R}
leads to the update rule for the teacher: θ ← θ+η ·∇θJ(θ)
where∇θJ(θ) =

∑
t∇θ log πθ(at|st)R and (at, st) is the

state-action pair at the t-th iteration. For the state features,
we use the current learner’s predictions of representative
samples. For the action space, we use a discrete Mixup
coefficient space {0, 0.5, 1} to reduce the search space. The
overall training is conceptually similar to prior work [69].

4.2 Performative Teaching

The concept of performativity has been studied primar-
ily in economics [75, 76] and recently in machine learn-
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Figure 2: Performative teaching for black-box neural learners.

ing [23, 77]. When supporting consequential decision-
making, predictive models can produce actions that influ-
ence the outcome they aim to predict at the beginning. These
predictions are called performative.

As shown in Figure 2, we decompose a neural network into
two components: a neural encoder g1(·), which is used
to extract features, and a linear classifier g2(·), which is
used to obtain class labels. Suppose we teach the last-layer
classifier of a neural network with omniscient DHT and
the teaching example will thus change the gradients for up-
dating the neural encoder. Then after the neural encoder
gets updated, the teaching target w∗ will also be shifted
because the data representation changes. The entire process
is iteratively executed. Inspired by the striking connection
between performativity and iterative teaching in the repre-
sentation space, we introduce performative teaching where
the teaching target w∗ will change dynamically according
to the teacher’s action. In the context of teaching black-box
neural learners, performative teaching is formulated as

min
(xt,yt)

d
(
wt,w∗(t)

)
, s.t. w∗(t) ∼M(xt−1,yt−1) (8)

where w∗(t) is the target parameters at the t-the iteration
andM(xi,yi) denotes the distribution of the target learner
parameters that is dynamically dependent on the teaching ex-
ample (xi,yi). In training, Equation 8 is solved alternately
with the gradient update for the neural encoder.

If we want to use performative teaching to train neural learn-
ers in practice, we still need to consider a few unresolved
problems. First, we have to estimate w∗ in each iteration.
Because the teaching is performed for linear classifiers, esti-
mating w∗ is relatively easy. We simply run a few more gra-
dient descent steps to update the last-layer linear classifiers
with the neural encoder fixed, and the resulting classifier
weights are viewed as an approximate w∗. Second, we need
to develop a concrete algorithm to minimize d(wt,w∗(t))
even if w∗(t) can be estimated. We resort to the simplest
greedy teaching algorithm. In order to preserve the semantic
meaning of the original feature x (given its ground truth
label y) and to remove potential degenerate solutions, we
optimize the teaching example in an ϵ-neighborhood of x,
e.g., ∥x̃ − x∥ ≤ ϵ. Combining all the pieces, we sum-
marize our performative teaching algorithm for training a
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Algorithm 1 Performative teaching for neural learners
1. Randomly initialize the neural network. We denote the neural
weights of g1 as v, and the neural weights of g2 as w;̇
for i = 1, 2, · · · , T1 do

2. Form a mini-batch of m samples and perform inference to
extract features, denoted as (xi

1,y
i
1), · · · , (xi

m,yi
m).

3. wbuffer ← w.
4. Fix v and update w by minimizing the empirical risk on
the training set (e.g., a few SGD steps).
5. w∗ ← w and then w ← wbuffer.
for j = 1, 2, · · · ,m do

6. Solve the greedy teaching problem for the j-th sample:

x̃
i
j = argmin

x
η
2
t

∥∥∥∥∥∂ℓ(x,yi
j |w)

∂w

∥∥∥∥∥
2

2

− 2ηt⟨w −w∗
,
∂ℓ(x,yi

j |w)

∂w
⟩

s.t.

∥∥∥∥∥ x

∥x∥
−

xi
j

∥xi
j∥

∥∥∥∥∥ ≤ ϵ, ∥x∥ = ∥xi
j∥

(9)

end
7. Use SGD to update the neural network (w and v) by replac-
ing (xi

1,y
i
1), · · · , (xi

m,yi
m) with (x̃i

1,y
i
1), · · · , (x̃i

m,yi
m).

end

black-box neural learners in Algorithm 1. After we obtain
the teaching examples x̃i

j with greedy DHT, we replace the
original xi

j with x̃i
j during training. This is essentially to

add a perturbation to the original feature and the backward
gradients to update the network will be affected. In practice,
the computational overhead is reasonably small as long as
we use a small number of steps to estimate w∗ in each it-
eration. Instead of using a ϵ-neighborhood of the original
feature in the Euclidean space, we use a ϵ-neighborhood
on the hypersphere with the radius being the norm of the
original feature in Equation 8. This is inspired by the obser-
vation in [78, 79, 80, 81, 82, 83] that angular distance in the
representation space tends to model semantic difference.

Performing DHT iteratively in the representation space can
provide additional information for the last-layer classifiers,
leading to better convergence of the last-layer classifiers.
This will in turn improve the backward gradients of the loss
w.r.t. the representation which is responsible for updating
the network encoder. From an optimization perspective,
performative teaching shares similar spirits to Lookahead
optimizer [84] in the sense that both methods use informa-
tion about future steps, which can be viewed as an approxi-
mate form of w∗. With the surrogate knowledge of w∗ for
the last-layer classifier, DHT implicitly encodes more infor-
mation about the loss landscape and may help the neural
encoder to avoid some poor local minima.

5 Experiments and Results
We evaluate DHT on several widely used image classifica-
tion datasets: for white-box and black-box teaching in the
logistic regression, we test our policies on synthetic half-
moon and MNIST; for black-box teaching in deep neural
networks, we test our methods on MNIST, CIFAR-10, and
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Figure 3: Omniscient teaching with or without label synthesis [14].
Convergence comparison between our greedy teaching policy with
several other baseline methods. Left: half-moon. Right: MNIST.

CIFAR-100. Full experiment details and additional experi-
mental results can be found in Appendix.

5.1 Omniscient Teaching

In the omniscient teaching scenario, we seek to optimize
the convergence speed to a target classifier w∗, and because
the target classifier exhibits good classification performance,
we also measure the convergence of the testing accuracy.
We initialize all the models with the same architecture and
model weights. All experiments are repeated ten times with
different seeds. We compare random teacher (i.e., SGD),
samples selected by IMT, and samples generated by DHT.
We update the student model with a standard SGD optimizer,
a learning rate of 0.001, and compare the convergence be-
havior in the first 300 iterations.

Greedy teaching policy. For greedy teaching, we addi-
tionally optimize the labels with [14], i.e., after one sample
has been selected or generated, we further optimize the
corresponding label by fixing the sample. The results are
summarized in Figure 3. The baseline methods SGD+Label
and IMT+Label correspond to variants of the LAST frame-
work [14]. For samples generated by DHT, we constrain
the value of each dimension to be within the minimum and
maximum of the original dataset; for the optimized one-hot
labels, we constraint its values to be positive yi > 0 and the
magnitude to satisfy ∥ỹ∥2 ≤ 2. Constraining the magnitude
to 2 gives the teacher more flexibility when generating la-
bels than the original one-hot label space. We observe that
with or without label synthesis, greedy DHT achieves the
fastest convergence and outperforms both SGD and IMT.

Parameterized teaching policy. The results of the data
transformation policy are given in Figure 4. We generally
observe that parameterized policy exhibits faster conver-
gence than greedy policy, and DHT again outperforms both
SGD and IMT by a significant margin. It is worth mention-
ing that we do not impose any constraint on the output space
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Figure 4: Convergence of data transformation policy. Left: binary
classification on half-moon. Right: 3/5 classification on MNIST.
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Figure 5: Convergence of GAN-based and VAE-based generative
modeling policy. Left: half-moon. Right: MNIST.

when synthesizing samples, resulting in out-of-distribution
samples that are not semantically interpretable for humans
(e.g., on MNIST it appears to be random noise images).

Next, we discuss the difference between GAN-based and
VAE-based teaching policies. The weight convergence is
given in Figure 5 and some generated samples are exempli-
fied below in Figure 6 and Figure 7. The GAN-based teacher
is able to outperform the VAE-based teacher in both experi-
ments. In general, we observe that by synthesizing samples
directly in the image space, the teacher has more freedom
in conveying information, causing the student to learn faster.
However, this also means that the data synthesized by a
GAN-based teacher might appear to be visually very dif-
ferent from the original data set. A VAE-based teacher can
synthesize samples that appear much closer to the original
data distribution at the cost of teaching performance. We
observe in Figure 6 and Figure 7 that the synthesized sam-
ples are nearly differentiable from the original data set. One
interesting observation is that the GAN-based teacher im-
plicitly learns a meaningful teaching policy. First, samples
are synthesized that have certain stylistic characteristics of
the original MNIST dataset but do not contain any mean-
ingful semantic information. During this stage, the student
can efficiently converge to w∗; afterward, the GAN-based
teacher generates samples that look more similar to the orig-
inal dataset, and we can interpret it as a fine-tuning process.
The evolution of the generated samples during the teaching
process can be seen in Figure 7.

5.2 Black-box Teaching

Parameterized teaching. We start with the black-box ver-
sion of parameterized teaching. We use the same teaching
objective as the parameterized teaching in the omniscient
setting and remove any information about the target classi-

w *

wt

w *

wt
w *

wt

Figure 6: Visualization of the data synthesized by a VAE-based
teacher after iterations 10, 150, and 290. The orange line indicates
the target classifier w∗; the green dashed line indicates the student
classifier. Different colors indicate different classes; points with
lower opacity represent the ground truth data distribution.
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Figure 7: MNIST samples synthesized by the DHT teacher con-
ditioned on GT labels (3/5) during the training process. Upper
row: samples synthesized by the VAE-based teacher. Lower row:
samples synthesized by the GAN-based teacher.
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Figure 8: Convergence of black-box parameterized teaching policy
with the full teaching space. Left: half-moon. Right: MNIST.

fier w∗, i.e., by relying solely on the empirical classification
loss on the validation set. Surprisingly, when teaching a
linear logistic regression learner, the knowledge about the
target classifier is not indispensable to achieve fast conver-
gence in terms of test accuracy (see Figure 8).

Method Accuracy (%)
ERM 61.75

cMixup 66.27

dMixup 65.80

Unrolling 65.18

Policy gradient 67.64

Table 1: Results on CIFAR-10.

Mixup-based teaching. We
empirically evaluate our
mixup-based teaching with
unrolling and policy gradi-
ent in Table 1. The learner
is a simple CNN model
optimized by a standard
Adam optimizer on CIFAR-
10 without data augmentation for 50 epochs. We compare
our Mixup-based teaching policy with standard empirical
risk minimization (ERM), ERM with continuous mixup
data augmentation (i.e., interpolation coefficient sampled
from a beta distribution, denoted as cMixup), and ERM with
discrete mixup data augmentation (i.e., mixing coefficient
discretized to {0, 0.5, 1}, denoted as dMixup). With policy
gradient, we observe that our DHT teacher is able to find a
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Dataset Learner SGD Random Policy DHT
MNIST MLP 92.45 ± 0.07 92.47 ± 0.06 95.02 ± 0.04

CIFAR-10

CNN-3 87.30 ± 0.28 87.17 ± 0.17 88.77 ± 0.35

CNN-6 90.34 ± 0.10 90.20 ± 0.09 91.61 ± 0.23

CNN-9 91.10 ± 0.26 91.12 ± 0.12 92.30 ± 0.13

CNN-15 91.85 ± 0.28 91.67 ± 0.13 92.44 ± 0.15

CIFAR-100

CNN-3 62.10 ± 0.29 62.04 ± 0.11 62.69 ± 0.37

CNN-6 65.02 ± 0.24 64.96 ± 0.17 66.81 ± 0.17

CNN-9 67.05 ± 0.29 67.19 ± 0.23 69.23 ± 0.34

CNN-15 68.39 ± 0.39 68.49 ± 0.17 68.96 ± 0.36

Table 2: Testing accuracy (%) of performative teaching. Multiple
types of neural learners (e.g., MLP and CNN) are considered.

policy that greatly facilitates the convergence of the student
model and outperforms the other baselines. Note that we
characterize the model states with model features that are
obtained through querying the student model, similar to [14].
We also notice that unrolling does not perform as well as the
baselines, and we suspect that this is because the space of
Mixup coefficients is highly non-smooth. There exist many
poor local minima that prevent the unrolling approach from
finding a good solution to the bi-level optimization.

Performative teaching for neural learners. We compre-
hensively evaluate the performance of the performative
teaching by conducting image classification experiments
with similar architectures and settings as [81]. For CIFAR-
10 and CIFAR-100, we start the training with the learning
rate of 0.1 and divide it by 10 at iteration 20k, 30k and 37.5k.
The training stops at iteration 42.5k. For MNIST, we start
the training with a learning rate of 0.001 and train for 39k
iterations. We use a standard SGD optimizer with weight
decay. The batch size is set to 128 and only basic data aug-
mentation is performed. Multiple network architectures are
used to serve as the learner and the specific architectures are
given in Appendix. Results are given in Table 2.

We compare our performative teaching with two other base-
lines. The first one is vanilla SGD optimization, where no
teaching takes place during the training. This is to demon-
strate the clean performance gain obtained by performative
teaching. From Table 2, we can clearly see that DHT con-
sistently outperforms vanilla SGD by a considerable margin.
To further verify whether DHT indeed teaches useful infor-
mation or not, we construct a random policy in the exact
same action space of the performative teacher, i.e., we omit
the teaching process, but instead uniformly sample a new
point on the same ϵ-neighborhood on the hypersphere of the
representation space. The only difference between random
policy and performative teaching is how we generate x̃, and
we note that the space to generate x̃ is the same for both.
This comparison shows that the performance gain does not
result from implicit data augmentation in the representation
space, as can be seen from Table 2 that a random policy
does not have a noticeable effect on the final performance.
All the results in Table 2 are averaged over 5 runs and the
standard deviations of accuracy are also given to make sure
that the performance gain is not due to randomness. The
performance gain of performative teaching is evident across
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Figure 9: Convergence of privacy-preserving teaching on MNIST.

all datasets and all different neural learners. We emphasize
that we do not have w∗ for the neural networks, so perfor-
mative teaching can be used to teach any neural network
on any dataset. We only consider a simple greedy DHT in
performative teaching, and the teaching performance could
be further improved with an advanced teaching algorithm.

5.3 Privacy-preserving Teaching via constrained DHT
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Figure 10: Private perceptual
distance of the synthesized sam-
ples during teaching. ϵ is a pre-
scribed distance threshold.

In practical applications,
generating samples that are
semantically distinct from
the original data distribution
could be beneficial. For ex-
ample, in the medical do-
main, we wish not to re-
veal sensitive information
that might contain in the
original dataset. As a proof
of concept, we regard pri-
vacy preservation as some
distance constraints on the feature space, i.e., the generated
samples are at least ϵ-away (in a semantic latent space) from
a pre-defined privacy set. The teaching objective is

min
θ
∥wv(θ)−w∗∥22 +

v∑
t=1

ℓ(πθ,y)|wt)

+ max{0, ϵ− ∥ϕ(πθ)− ϕ(x)∥22}
s.t. ∥ϕ(πθ)− ϕ(x)∥22 ≥ ϵ

(10)

where ϕ(·) is a pre-trained neural network for computing
perceptual distance. Here, we demonstrate that it is possi-
ble to achieve similar teaching performance by only syn-
thesizing samples that satisfy the privacy constraints (see
Figure 9). We also show the private perceptual distance
during the teaching in Figure 10 in which the private per-
ceptual distance is defined as the minimal distance between
the samples in the privacy set and the synthesized sample.

6 Concluding Remarks
In this paper, we introduce a novel data hallucination teach-
ing framework and demonstrate, both theoretically and
empirically, that DHT achieves promising teaching perfor-
mance in both omniscient and black-box settings. We also
highlight that a novel performative teaching formulation is
proposed for teaching black-box neural learners. Experi-
ments show that DHT is able to achieve significant perfor-
mance gains when teaching black-box neural learners.
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A Proof of Theorem 1

From the (t+ 1)-th gradient update with the greedy DHT teacher, we have that∥∥wt+1 −w∗∥∥2 =
∥∥wt − ηt∇wtℓ(x̃it , yit |wt)−w∗∥∥2

=
∥∥wt − ηtg(x̃it) · Tx→x̃ ◦ ∇wtℓ(xit , yit |wt)−w∗∥∥2

=

∥∥∥∥wt − ηt g(x̃it) · β︸ ︷︷ ︸
def
=gs(x̃it )

·∇wtℓ(xit , yit |wt)−w∗
∥∥∥∥2 (11)

where x̃ is the data generated by DHT and it denotes a randomly sampled index from the pool in the t-th iteration. Because
Tx→x̃ is a scaling mapping, we have that gs(x̃) is generally defined as

gs(x̃) = β · g(x̃) = β · ∥∇wℓ(x, y|w)∥
∥∇wℓ(x̃, y|w)∥

· ∥x̃∥
∥x∥

, (12)

which, for different linear learners, can be instantiated as

LSR learner: gs(x̃) =
β⟨w,x⟩ − β · y
β⟨w,x⟩ − y

LR learner: gs(x̃) =
β + β · exp(β · y⟨w,x⟩)

1 + exp(y⟨w,x⟩)

(13)

which can be controlled by adjusting the value of β. β can be dependent on w, so it can be different in different iterations.
Intuitively, since we can adjust β to equivalently adjust the learning rate, we can therefore provably have a better convergence
rate. Concretely, we have that∥∥wt+1 −w∗∥∥2 =

∥∥wt −w∗∥∥2 − 2ηtgs(x̃it)⟨∇wtℓ(xit , yit |wt),wt −w∗⟩

+ η2t (gs(x̃it))
2
∥∥∇wtℓ(xit , yit |wt)

∥∥2 (14)

which can be simplified as (by denoting∇wtℓ(xit , yit |wt) as ∇ℓit(wt)):∥∥wt+1 −w∗∥∥2 =
∥∥wt −w∗∥∥2 − 2ηtgs(x̃it)⟨∇ℓit(wt),wt −w∗⟩+ η2t (gs(x̃it))

2
∥∥∇ℓit(wt)

∥∥2 . (15)

Because we know that the synthesized data xit generated by the greedy DHT policy is the solution to the following
minimization:

x̃it = argmin
x′

it

{
η2t (gs(x

′
it))

2
∥∥∇wtℓ(xit , yit |wt)

∥∥2 − 2ηtgs(x
′
it)⟨∇wtℓ(xit , yit |wt),wt −w∗⟩

}
, (16)

then we plug a new x̃′′
it

which satisfies gs(x̃′′
it
) = c1 ∥wt −w∗∥ to Eq. (15) and have the following inequality:∥∥wt+1 −w∗∥∥2 ≤ ∥∥wt −w∗∥∥2 − 2ηtgs(x̃

′′
it)⟨∇ℓit(w

t),wt −w∗⟩+ η2t (gs(x̃
′′
it))

2
∥∥∇ℓit(wt)

∥∥2
=

∥∥wt −w∗∥∥2 − 2ηtc1
∥∥wt −w∗∥∥ ⟨∇ℓit(wt),wt −w∗⟩

+ η2t c
2
1

∥∥∇ℓit(wt)
∥∥2 ∥∥wt −w∗∥∥2 (17)

which holds because x̃it leads to the minimal
∥∥wt+1 −w∗

∥∥2 and x̃′′
it

has to result in a larger or equal
∥∥wt+1 −w∗

∥∥2.

Next, we apply the convexity of f(·) and the order-1 strong convexity [85] of ℓit(·), and therefore have that (let µit = 0
when ℓit is not order-1 strongly convex):

−⟨∇ℓit(wt),wt −w∗⟩ ≤ ℓit(w
∗)− ℓit(w

t)− µit

2

∥∥wt −w∗∥∥ (18)

which results in∥∥wt+1 −w∗∥∥2 ≤ ∥∥wt −w∗∥∥2 + 2ηtc1
∥∥wt −w∗∥∥ (ℓit(w∗)− ℓit(w

t)− µit

2

∥∥wt −w∗∥∥ )
+ c21

∥∥∇ℓit(wt)
∥∥2 ∥∥wt −w∗∥∥2

=
∥∥wt −w∗∥∥2 + 2ηtc1

∥∥wt −w∗∥∥ (ℓit(w∗)− ℓit(w
t))− ηtc1µit

∥∥wt −w∗∥∥2
+ c21

∥∥∇ℓit(wt)
∥∥2 ∥∥wt −w∗∥∥2 .
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Considering the condition that ℓi is Li-Lipschitz continuous and denoting Lmax = maxi Li, we then have∥∥wt+1 −w∗∥∥2 ≤ ∥∥wt −w∗∥∥2 + 2ηtc1
∥∥wt −w∗∥∥ (ℓit(w∗)

− ℓit(w
t))− ηtc1µit

∥∥wt −w∗∥∥2 + η2t c
2
1L

2
max

∥∥wt −w∗∥∥2 .
The interpolation condition [86] indicates that w∗ is the minimum for all functions ℓi, which is equivalent to ℓi(w

∗) ≤ ℓi(w
t)

for all i. Therefore, we have that (ℓit(w
∗)− ℓit(w

t)) ≤ 0. Finally we arrive at∥∥wt+1 −w∗∥∥2 ≤ ∥∥wt −w∗∥∥2 − ηtc1µit

∥∥wt −w∗∥∥2 + η2t c
2
1L

2
max

∥∥wt −w∗∥∥2
= (1− µitηtc1 + η2tL

2
maxc

2
1)

∥∥wt −w∗∥∥2 . (19)

Taking expectation w.r.t. it, we obtain that

E{
∥∥wt+1 −w∗∥∥2} ≤ Eit{(1− µitηtc1 + η2tL

2
maxc

2
1)

∥∥wt −w∗∥∥2}
= (1− Eit{µit}ηtc1 + η2tL

2
maxc

2
1)

∥∥wt −w∗∥∥2
= (1− µ̄ηtc1 + η2tL

2
maxc

2
1)

∥∥wt −w∗∥∥2 .
(20)

Using recursion, we have that

E{
∥∥wT −w∗∥∥2} ≤ (1− µ̄ηtc1 + η2t c

2
1L

2
max)

T
∥∥w0 −w∗∥∥2 (21)

where we usually make ηtc1 a constant such that (1− µ̄ηtc1 + η2t c
2
1L

2
max) also becomes a constant between 0 and 1. This

is equivalent to the statement in the theorem that at most ⌈(log 1
1−c1ηtµ̄+η2

t c
2
1Lmax

)−1 log( 1ϵ ∥w
0 −w∗∥2)⌉ iterations are

needed to achieve the ϵ-approximation, namely E{∥wT −w∗∥2} ≤ ϵ. The proof is concluded. □
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B Experimental Details

Experiments on MNIST. For teaching logistic regression learners, we do not use the original MNIST dataset but use a fixed
projection matrix P (P ∈ R784×24) to downscale the flattened 784-dimensional MNIST image data to a 24-dimensional
feature vector. Experiments are performed on the 24D feature vectors. For visualization, we un-project the 24D feature
vectors to the original image shape using the pseudo-inverse matrix P+ (P+ ∈ R24×784). For teaching a logistic regression
learner, we use 1100 (1000/100) images from class 3 and 5. For teaching neural learners with a performative teaching policy,
we use the full MNIST dataset without any data augmentation.

Experiments on Half-moon. For half-moon, we use the built-in function from scikit-learn to generate 1000 (800/200)
sample points with a Gaussian noise of 0.2.

Performative Teaching. The training schedule has been elaborated on in the main paper. The employed network
architectures are described in Table 3. The MLP used for MNIST training has two layers (input dimension - 128 - output
dimension). There are in total three hyperparameters: we denote the number of update on w to obtain w∗ as nw, the number
of feature update to obtain x̃i

j as m and the ϵ-neighbourhood. In our experiments, we use a m of 15, nw of 5 and ϵ of 0.1.

Layer CNN-3 CNN-6 CNN-9 CNN-15
Conv1.x [3× 3, 64]× 1 [3× 3, 64]× 2 [3× 3, 64]× 3 [3× 3, 64]× 5

Pool1 2× 2, Max Pooling, Stride 2
Conv2.x [3× 3, 128]× 1 [3× 3, 128]× 2 [3× 3, 128]× 3 [3× 3, 128]× 5

Pool2 2× 2, Max Pooling, Stride 2
Conv3.x [3× 3, 256]× 1 [3× 3, 256]× 2 [3× 3, 256]× 3 [3× 3, 256]× 5

Pool3 2× 2, Max Pooling, Stride 2
Fully Connected 256 256 256 256

Table 3: Network architecture specification of the used CNN models. Note, we use the same CNN network architecture
definition as [81] with one additional CNN-3 following the same principle. [3×3, 64]×2 denotes 2 cascaded 2D convolution
layers with 64 3×3 filters.

Mixup-based Teaching (Unrolling). The training schedule has been elaborated on in the main paper. The teaching objective
of mixup-based teaching is inspired by [71]:

min
θ
Lval(w

∗(θ),θ)

s.t. w∗(θ) = argmin
w

Ltrain(w,θ)

with w as the student weight and θ as the teacher weight. Following [71], we also perform first-order and second-order
optimization. The result reported in the main paper is obtained by using second-order optimization.

∇θLval(w,θ)

∇wLtrain(w,θ)

∇θLval(w − ξ∇wLtrain(w,θ),θ)

∇wLtrain(w,θ)

Mixup-based Teaching (Policy Gradient). We use a simple MLP with two layers (input dimension (3) - 128 - output
dimension (3)) and dropout as policy network. We perform one step of optimization after running two epochs of training.

• Reward Signal: ℓ(xval,yval|wv)

• Reward: R = rT (s1...T , a1...T )

• Objective Function: J(θ) = Eπθ
{R}

• Teacher Update Function: ∇θJ(θ) =
∑

t∇θlogπθ(at|rt)R

• State: model features (obtained through query student model) consists of current iteration, average training loss and
best validation loss. The best validation loss is updated every 100 iterations.

• Action: discretise the λ into discrete action space [0, 0.5, 1.0]
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C Additional Experimental Results

The objective of DHT is to reduce the distance between the student model wt with some desired w∗. Therefore, we only
show the convergence of the weight difference in the main paper. w∗ is obtained by using a model with the same initial
weight as the student model and training it until convergence. We use a learning rate of 0.001 and a standard SGD optimizer
with no momentum and weight decay to optimize the logistic regression learner. Since the w∗ is associated with good
classification accuracy on the test dataset, we further show the convergence of the test accuracy.

C.1 Teaching Logistic Regression on Half-moon Data with Greedy DHT

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods
using a greedy teaching policy on half-moon data. We use an Adam optimizer with a step size of 0.02, factor for average
gradient of 0.8 (β1), factor for average squared gradient of 0.999 (β2), and update each model for 300 iterations. We perform
early stopping when the loss converges. We constrain the sample value to be within the maximum and minimum values
of the original dataset. We use the same optimizer (expect a lower learning rate of 0.001) to optimize the label. We also
tested different magnitudes, but the teaching effectiveness degenerates with a smaller magnitude. Note, the original LAST
framework [14] does not impose any constraint to achieve good teaching results.
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Figure 11: Omniscient teaching with or without label synthesis. Convergence comparison between our greedy teaching policy
with several other baseline methods on half-moon.

C.2 Teaching Logistic Regression on MNIST with Greedy DHT

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a greedy teaching policy on MNIST data. We use an AMSGrad optimizer with a step size of 0.02, a factor for average
gradient of 0.8 (β1), a factor for average squared gradient of 0.999 (β2) and update each model for 300 iterations. We use
AMSGrad because we found it converges faster for our 24D data. We perform early stopping when the loss converges.
We constrain the sample value to be within the maximum and minimum values of the original dataset. We use the same
optimizer (expect a lower learning rate of 0.001) to optimize the label. We constrain the magnitude of the label to be 2.

0 100 200 300
Number of iterations

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

0 100 200 300
Number of iterations

0.0

0.5

1.0

1.5

D
iff

er
en

ce
 b

et
w

ee
n 
w
* 

an
d 
w
t

Figure 12: Omniscient teaching with or without label synthesis. Convergence comparison between our greedy teaching policy
with several other baseline methods on MNIST.

C.3 Teaching Logistic Regression on Half-moon Data with Data Transformation

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
the data transformation policy on half-moon data. Generally, we notice a much steeper convergence compared to the greedy
teaching policy. We optimize the teacher using an Adam optimizer with a learning rate of 0.002, a factor for average gradient
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of 0.9 (β1), a factor for average squared gradient of 0.999 (β2) and train for 1000 iterations. For each iteration, we perform
40 steps of unrolling.

Model input. Model input is the current student weight wt, the difference to the target model weight wt −w∗, one random
sample/label pair from the original dataset (x,y). The synthesized sample x̃ is conditioned on label y.

Teacher architecture. The teacher is a simple MLP with three layers (input dimension (8) - 32 - 16 - output dimension (2))
and ReLU activation.
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Figure 13: Accuracy and weight convergence using data transformation policy in binary classification on half-moon.

C.4 Teaching Logistic Regression on MNIST with Data Transformation

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a data transformation policy on MNIST data. Generally, we notice a much steeper convergence compared to the greedy
teaching policy. We optimize the teacher using an Adam optimizer with a learning rate of 0.002, a factor for average gradient
of 0.9 (β1), a factor for average squared gradient of 0.999 (β2) and train for 1000 iterations. For each iteration, we perform
40 steps of unrolling.

Model input. Model input is the current student weight wt, the difference to the target model weight wt −w∗, one random
sample/label pair from the original dataset (x,y). The synthesized sample x̃ is conditioned on label y.

Teacher architecture. The teacher is a MLP with five layers (input dimension (82) - 128 - 256 - 512 - 512 - 1024 - output
dimension (24)), ReLU activation and 1D batch normalization.
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Figure 14: Accuracy and weight convergence using data transformation policy in 3/5 classification on MNIST.

C.5 Teaching Logistic Regression on Half-moon Data with Generative Modeling

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a VAE-based generative teacher on half-moon data. In general, the performance is slightly worse than the IMT baseline but
still significantly outperforms optimizing using random samples (SGD).

Model input. Model input for the teacher is the current student weight wt, the difference to the target model weight
wt −w∗, one random sample/label pair from the original dataset (x,y). The synthesized sample x̃ is conditioned on label
y. The pre-trained VAE model takes one random sample/label pair (x,y) as input.

Teacher architecture. The VAE-based teacher utilizes a pre-trained VAE model, parametrized as a simple MLP with three
layers (input dimension (4) - 128 - 256 - 128 - output dimension) as encoder and another MLP with three layers (input
dimension - 128 - 256 - 128 - output dimension) as the decoder.
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Figure 15: Accuracy and weight convergence using VAE-based teacher in binary classification on half-moon.

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a GAN-based generative teacher on half-moon data. In general, the performance is comparable with that of the IMT baseline
and significantly outperforms optimizing using random samples (SGD).

Model input. Model input is the current student weight wt, the difference to the target model weight wt −w∗ and one
random label from the original dataset y. The synthesized sample x̃ is conditioned on label y.

Teacher architecture. The GAN-based teacher is a simple MLP with three layers (input dimension (8) - 32 - 16 - output
dimension (2)) and ReLU activation. The additional discriminator is a simple MLP with two layers (input dimension (4) - 8 -
output dimension’), leaky ReLU (0.2), and a drop-out layer (0.3).
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Figure 16: Accuracy and weight convergence using GAN-based teacher in binary classification on half-moon.

C.6 More Qualitative Results of Generative Modeling Policy on Half-moon

We visualize the data distribution of the synthesized data by a VAE-based teacher after we finish teaching in Figure 17. We
observe that by using a VAE-based teacher, we can generate data samples with similar distribution in the x- and y-coordinates
of both classes as the original data distribution. The generated samples are more widespread and match the original data
distribution better; however, sometimes, samples are synthesized outside of the original data distribution.
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Figure 17: Visualization of the data distribution of the synthesized data by a VAE-based teacher after 300 iterations. GT
means the ground truth.

We also visualize the data distribution of the synthesized data by a GAN-based teacher after we finish teaching in Figure 18.
We observe that by using a GAN-based teacher, we can generate data samples with similar distribution in the x- and
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y-coordinates of class 1 as the original data distribution. Samples generated for class 0 are more clustered but still lie
completely within the original data distribution. We do not interpret these clustered samples as an indication of mode
collapse but rather view these samples as the most informative ones that can cause the model to converge faster to the desired
w∗. Since we also observe this kind of clustered generation when using a greedy teaching policy.
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Figure 18: Visualization of the data distribution of the synthesized data by a GAN-based teacher after 300 iterations. GT
denotes the ground truth.

Here we visualize the synthesized samples together with the ground truth data distribution, the target classifier w∗, and the
student classifier wt at different epochs. We can clearly notice the difference between the generated data samples and also
its effect on the student classifier. By synthesizing more clustered data samples using a GAN-based teacher, the student
classifier is able to converge faster to w∗. When training a GAN-based teacher, there exists a trade-off between generating
samples that will lead to faster convergence (clustered samples) and samples that are more similar to the original data
distribution (spread samples). The advantage of using a VAE-based teacher is that the training is relatively stable, and the
generated samples are much closer to the original dataset because we only teach in the feature space.
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Figure 19: Visualization of the data synthesized by a VAE-based teacher after iteration 10, 80, 150, 240, and 290. The orange
line indicates the target classifier w∗; the green dashed line indicates the student classifier. Different colors indicate different
classes; points with lower opacity represent the ground truth data distribution.
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Figure 20: Visualization of the data synthesized by a GAN-based teacher after iteration 10, 80, 150, 240, and 290. The orange
line indicates the target classifier w∗; the green dashed line indicates the student classifier. Different colors indicate different
classes; points with lower opacity represent the ground truth data distribution.
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C.7 Teaching Logistic Regression on MNIST with Generative Modeling

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods
using a VAE-based generative teacher on MNIST data. In general, the performance is worse than the IMT baseline but still
outperforms optimizing using random samples (SGD).

Model input. Model input for the teacher is the current student weight wt, the difference to the target model weight
wt −w∗, one random sample/label pair from the original dataset (x,y). The synthesized sample x̃ is conditioned on label
y. The pre-trained VAE model takes one random sample/label pair (x,y) as input.

Teacher architecture. The VAE-based teacher utilizes a pre-trained VAE model, with a simple CNN with two 2D
convolutional layers as the encoder and another CNN with two 2D transposed convolution layers as the decoder.
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Figure 21: Accuracy and weight convergence using VAE-based teacher in 3/5 classification on MNIST.

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a GAN-based generative teacher on MNIST data. In general, the performance is comparable with that of the IMT baseline
and significantly outperforms optimizing using random samples (SGD).

Model input. Model input for the teacher is the current student weight wt, the difference to the target model weight
wt −w∗, one random sample/label pair from the original dataset (x,y). The synthesized sample x̃ is conditioned on label
y.

Teacher architecture. The GAN-based teacher utilizes a conditional deep convolutional GAN (DCGAN) to directly generate
MNIST images with the original size (28× 28). The synthesized images are then downscaled using a projection matrix to
teach the logistic regression learner. The generator consists of three blocks: each block consists of 2D transposed convolution
layers, 2D batch normalization, and ReLU activation. Block x upscales the input feature (RN×D) to a sample feature map
(RN×128×3×3); block y upscales the label embedding (RN×ncls ) to a label feature map (RN×128×3×3). Both feature maps
are concatenated and inserted into the third block xy and upscaled to generate MNIST-like samples ((RN×1×28×28)). The
discriminator operates in a similar fashion: block x downscales the input image (RN×1×28×28) to a sample feature map
(RN×32×14×14); block y downscales the one-hot label embedding (RN×10×28×28) to a label feature map (RN×32×14×14).
Both feature maps are concatenated and inserted into the third block xy to predict if the sample is real or fake.
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Figure 22: Accuracy and weight convergence using GAN-based teacher in 3/5 classification on MNIST.

C.8 Teaching Logistic Regression on Half-moon Data with Parameterized Black-box Teaching

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a parametrized black-box teaching policy on half-moon data. Even without the knowledge about w∗, the DHT is able to
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significantly outperform the IMT baseline. It is worth mentioning that we use a surrogate w∗ to calculate the distance
between wt and w∗, as the w∗ is not present. Here, we just use a general w∗ with good classification performance.

Model input. Model input for the teacher is the current student weight wt and one random sample/label pair from the
original dataset (x,y). The synthesized sample x̃ is conditioned on label y.

Teacher architecture. The teacher is a simple MLP with three layers (input dimension (6) - 32 - 16 - output dimension (2))
and ReLU activation.
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Figure 23: Accuracy and weight convergence using parametrized black-box teaching policy in binary classification on
half-moon.

C.9 Teaching Logistic Regression on MNIST with Parameterized Black-box Teaching

We observe similar behavior between the weight convergence and the accuracy convergence of the examined methods using
a parametrized black-box teaching policy on MNIST data. Even without the knowledge about w∗, the DHT is able to
significantly outperform the IMT baseline.

Model input. Model input for the teacher is the current student weight wt and one random sample/label pair from the
original dataset (x,y). The synthesized sample x̃ is conditioned on label y.

Teacher architecture. The teacher is an MLP with five layers (input dimension 58) - 128 - 256 - 512 - 512 - 1024 - output
dimension (24)), ReLU activation and 1D batch normalization.
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Figure 24: Accuracy and weight convergence using parametrized black-box teaching policy in 3/5 classification on MNIST.


